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Abstract
Systems software today is composed of numerous modules
and exhibits complex failure modes. Existing failure detec-
tors focus on catching simple, complete failures and treat
programs uniformly at the process level. In this paper, we ar-
gue that modern software needs intrinsic failure detectors that
are tailored to individual systems and can detect anomalies
within a process at finer granularity. We particularly advo-
cate a notion of intrinsic software watchdogs and propose
an abstraction for it. Among the different styles of watch-
dogs, we believe watchdogs that imitate the main program
can provide the best combination of completeness, accuracy
and localization for detecting gray failures. But, manually
constructing such mimic-type watchdogs is challenging and
time-consuming. To close this gap, we present an early explo-
ration for automatically generating mimic-type watchdogs.

1 Introduction
Software inevitably fails. In programs designed for interac-
tive usage, a user can observe anomalies in the software and
react. For example, the user of a text editor may find that
the backspace key can no long delete characters so she may
restart the process and restore the last saved file. But a large
fraction of software today is a component of some online
service that demands high availability with minimal man-
ual intervention [13, 29]. Such software needs to proactively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321440

check whether it is functioning properly at runtime and au-
tonomously take corrective action when serious problems are
detected, and this requires effective failure detectors.

Despite their importance, failure detectors have tradition-
ally been implemented as a thin module with simple logic
independent of the underlying code: a monitored process is as-
sumed to be working as long as it does something periodically
based on the contract with the external detector, e.g., replies
to pings, sends heartbeat messages, or maintains sessions.
This works fine for fail-stop failures, but it cannot detect com-
plex gray failures [23] including partial disk failures [31],
limplock [17], fail-slow hardware [11, 20], and state corrup-
tion [16], which are common in large cloud infrastructure.

These failure detectors are overly generic, treating all mon-
itored software as coarse-grained “nodes”. The resulting fail-
ure modes are inherently too simple to represent the com-
plex behavior of modern software. The recently proposed
Panorama [22] attempts to address this limitation by convert-
ing any requester of a monitored process into a logical ob-
server and captures error evidence in the request paths. While
this approach can enhance failure detection, the observers
cannot identify why the failure occurs or isolate which part of
the failing process is problematic, making subsequent failure
diagnosis painful and time-consuming [4]. Hierarchical spies
as proposed in Falcon [27] has similar limitations.

In this position paper, we argue that system software needs
intrinsic failure detectors that detect anomalies within a pro-
cess at finer granularity. An intrinsic detector monitors inter-
nally for subtle issues specific to a process, e.g., checking
if a Cassandra background task of SSTable compaction is
stuck. Importantly, an intrinsic detector could pinpoint the
problematic code region along with the payload for diagnos-
ing and reproducing production failures. This precise fault
information could further help expedite recovery.

In particular, we advocate a promising yet under-explored
type of intrinsic failure detector – intrinsic watchdogs – for
system software. Watchdogs are widely used in embedded
devices such as deep space probes whose operation environ-
ment can be remote and hostile due to extreme temperature,
high-intensity radiation, etc. They are hardware circuits con-
trolled by embedded software to automatically detect anom-
alies within the system, and reset the processor or microcon-
troller in response to failure. In the broader software domain,
however, only a few mature systems have adopted the watch-
dog concept [1]. Even for these systems, the watchdog mod-
ules are designed in a shallow way (e.g., to only periodically
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Table 1. Comparison of three abstractions: crash failure detector, error handler and watchdog.

Abstraction Scope Execution Goal Checks Target Analogy

Crash FD Extrinsic Concurrent Inform another process about a process’s status to benefit a group Liveness Protocol failure Heartbeat
Error handler Intrinsic In-place Mitigate a known error in a specific program point to prevent failure Safety Low-level error Immune sys.
Watchdog Intrinsic Concurrent Monitor overall software health and assess if software is functioning Safety+Live. Partial failure Blood test

check some status code), which are in fact equivalent to ex-
trinsic detectors. It is unclear what a truly intrinsic software
watchdog should be like and how to systematically write it.

To shed some light on this under-explored type of intrinsic
failure detector, we propose a unique software watchdog ab-
straction (§3.1), elucidate characteristics of a good watchdog
(§3.2), and describe design principles for coding watchdogs
(§3.3). Based on these design principles we believe that a
particularly effective type of watchdog is one that mimics the
main program. But manually writing such a watchdog is time-
consuming and challenging to get right as it needs to simulate
the key interactions of the main program without negatively
impacting execution. To address this gap we present an early
exploration of how customized, mimic-type watchdogs can
be generated for a given piece of software (§4), and conclude
with a discussion of challenges and future directions (§5).

2 Background and Motivation
A Watchdog Timer (WDT) [12] is an essential component
found in embedded systems to detect and handle hardware
faults or software errors. WDT’s use internal counters that
start from an initial value and count down to zero. When the
counter reaches zero, the watchdog resets the processor. In a
multi-stage watchdog, it will initiate a series of actions upon
timeout, such as generating an interrupt, activating fail-safe
states, logging debug information and resetting the processor.
To prevent a reset, the software must keep “kicking” the
watchdog, typically by writing to some control port.

To effectively use a watchdog, the program must do more
than just kick the watchdog at regular intervals – the software
should perform sanity checks [19], on e.g. the stack depth,
program counter, resource usage, and status of the mechanical
components before kicking the watchdog. It is also good
practice to insert a flag at each important point of the main
loop and check all flags at the end [30]. In a multitasking
system, the watchdog should also try to detect errors such as
infinite loops, deadlock, and priority inversion in each task.

At a high level, the basic hardware watchdog timer mecha-
nism is similar to a crash failure detector [15] in distributed
systems. But there are two main distinctions to be made. First,
the watchdog’s control logic is closely coupled with the inter-
nal software state, it is an intrinsic component; crash failure
detectors on the other hand share little software state, they
are extrinsic. Second, the primary goal for a failure detec-
tor in a distributed system is to benefit a group of processes.
When a failing process is detected, the process group can

use that information to adjust its behavior for e.g., consensus,
broadcasting, load balancing, or deciding a replica set. In
comparison, the primary goal for a watchdog is to benefit
the individual process it monitors, and a fault that does not
immediately concern the process group protocol may still be
of interest to a watchdog. Watchdogs and traditional failure
detectors can and should co-exist. Watchdogs have better ac-
cess to internal system states and thus will be particularly
suitable for dealing with partial failures. Crash failure detec-
tors have stronger isolation. So if severe thrashing causes an
entire process to become unresponsive and jeopardizes the
watchdogs as well, a crash detector can still catch the failure.

In contrast with the popularity of watchdogs in embedded
systems, mainstream software engineering does not put much
emphasis on designing intrinsic watchdogs despite a similar
need for robustness. The primary way for system software
to catch subtle failures today is to rely on error handlers or
in-place assertions. Although error handlers do a good job of
detecting some program-specific faults, they are designed as
part of the main business logic, with the goal of mitigating
some specific known error condition associated with a spe-
cific program point for the program to continue execution. So
for example catching an EINTR error during a write system
call is the target of an error handler, and it may retry suc-
cessfully. Watchdogs on the other hand are tasked to monitor
overall software health and give a definitive assessment as to
whether the software is still functioning properly. In addition,
complex failures such as metadata inconsistency and data in-
tegrity require complex checks beyond a single operation and
are thus not suitable for error handlers. Watchdogs can run
complex fsck-like checks in parallel to the normal execution
to catch such failures. Liveness-related failures often also do
not have explicit error signals that can trigger a handler: there
is no signal for e.g., write being blocked indefinitely or some
thread deadlocking or infinitely looping. So, these sorts of
failures are the target of watchdogs but not error handlers.
Table 1 summarizes the comparison of crash failure detectors,
intrinsic watchdogs, and error handlers.

3 Designing Watchdogs for Software
A primitive form of software watchdog can be realized through
ad-hoc runtime checking. For example, seasoned developers
may create a thread that periodically checks if enough mem-
ory remains. In this Section, we propose a watchdog design to
systematically perform runtime checking, and describe princi-
ples behind the effective construction of software watchdogs.
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Figure 1. kvs running with its watchdog in production.

To make the discussion more concrete, we use a key-value
store kvs as a running example. Despite its simple interface
(GET, SET, APPEND, DEL), kvs has complex internals, including
request listener, indexer, disk flusher, replication engine, etc.

3.1 A Watchdog Abstraction

Basic Structure. A watchdog is an extension embedded in
the main program to monitor system status. It lives within
the program’s address space (Figure 1) and encapsulates all
the checking procedures (checkers). Each checker stores a
sequence of specific instructions tailored to inspect a certain
part of the main program, such as the kvs indexer, for expected
behavior. A watchdog driver will manage checker scheduling
and execution. When a checker executes, it might get stuck,
crash, or trigger an error. The watchdog driver catches failure
signatures from checkers, aborts or restarts their executions
and applies an action to the main program accordingly.

Concurrent Execution. It is natural to insert the watchdog
checkers directly in the main program. However, adding many
checkers in place can make the original code lengthy, hard
to maintain and even introduce unintended effects. For ex-
ample, checkers with an improper try-catch can alter the
main execution flow unexpectedly, making the software frag-
ile. Moreover, faults like control flow errors [9, 16, 28] and
deadlocks fundamentally cannot be checked in place by the
executing instruction. From a performance perspective, exe-
cuting heavyweight checkers in-place also incurs a significant
overhead on overall execution time.

We instead propose a design where the watchdog runs con-
currently along with the main program. Concurrent execution
allows checking to be decoupled so a watchdog can execute as
many checkers as necessary to catch faults comprehensively,
without slowing down the main program during fault-free
execution. When a checker crashes or triggers an assertion
because a fault was exposed, the concurrent watchdog also
will not unexpectedly alter the execution of the main program.

State Synchronization. If we are not careful, concurrent
checkers might report failures that do not exist in the main
program. For example, if kvs was configured to be in-memory

only or if the snapshot directory does not exist yet because
no SET requests are received, an error report from the disk
flusher checker would be spurious. To address this issue, the
watchdog must synchronize state with the main program. We
introduce the notion of context for this purpose. A context
is bound with each checker and supplies the payload and ar-
guments to the checking procedures. State synchronization
is achieved through watchdog hooks placed in the main pro-
gram. When the main program execution reaches the hook
points, the hook uses the current program state to update the
context in the watchdog. The watchdog driver will ensure
that a checker’s context is ready before executing it. To avoid
altering main execution, this synchronization is one-way.

3.2 What Makes for a Good Watchdog?
With the watchdog extension running together with the main
program, a process will have its normal execution and the
checking execution. In a poorly designed watchdog, the check-
ing execution is too disjoint from normal execution: it will
create a false sense of health even when the main program
is broken for a long time or it will “bark” excessively even
when the main program executes smoothly. In contrast, a good
watchdog intersects the normal execution so it accurately re-
flects the status of the main program. Statically, this means
the checkers of a good watchdog achieve high coverage of
both the main program’s major components and the variety
of safety and liveness requirements these components may
potentially violate. Dynamically, a good watchdog’s contexts
are in sync with the main program states.

With these two executions, a good watchdog must provide
strong isolation. Executing watchdog checkers should not
incur unintended side-effects or add significant cost to the
normal execution. For example, in monitoring the indexer
of kvs, the checkers may try to retrieve or insert some keys,
which should not overwrite data produced from the normal
execution or significantly delay normal request handling. The
isolation also applies in the opposite direction: a bug in the
main program should not compromise the whole watchdog.

3.3 How to Write Watchdog Checkers?

Principles. Because a good watchdog should accurately re-
flect the main program’s status without imposing on the nor-
mal execution, we believe the first design principle in writing
watchdog checkers is to let the checker share a similar fate as
the main program. For example, if the kvs replication engine
is stuck in waiting for an incoming message, a corresponding
checker may also hang in executing some polling test (but,
the watchdog driver itself is not affected and can detect the
checker hang). As another example, to detect memory pres-
sure in a Java program, a checker can run a worker thread in
a loop sleeping for a short time; if when the worker awakens,
the elapsed time is significantly larger than the specified sleep
time, the checker likely suffered from a long GC pause [2].
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Table 2. Three types of watchdog checkers. ✘: it cannot pin-
point the cause of failure; ✦: it can narrow down causes to
some extent; ✔: it can pinpoint the error.

Type Level Example Completeness

Accuracy

Pinpoint

Probe API App spy, httpd
mod_watchdog

Weak Perfect ✘

Signal Resource WDT, Linux
watchdogd

Modest Weak ✦

Mimic Operation HDFS disk
checker (partly)

Strong Strong ✔

This implies that the main program is likely experiencing
excessive memory usage or a serious memory leak [6].

In addition, checkers should operate at a level close to the
failure. Checkers that only monitor client-facing interface
functions can easily miss detection of many internal faults
(e.g., silent failure in a compaction background task). They
also make diagnosis and reaction to a reported failure difficult.
On the other hand, it is hard to require checkers to always
pinpoint the exact location of the bug. A more realistic goal
is to have the checkers report failure at a location that is in
the ballpark of the root cause, e.g., several instructions away
in the same function, or at caller of the faulting function.

While it is tempting to check as much as possible, checkers
should focus on catching faults manifestable only in a pro-
duction environment. For example, since kvs partitions may
be corrupted in production due to either hardware problems
or unexpected code bugs, it is worthwhile to have a checker
that computes and validates the checksum of each partition.
Logically deterministic errors that lead to wrong results, on
the other hand, are better eliminated through unit testing. For
example, the kvs partition manager is supposed to sort the
key ranges in all partitions in ascending order. Relying on a
watchdog checker to ensure this correctness property may be
an excuse for laziness in quality assurance. Of course, testing
cannot eliminate all logic bugs, so it is possible that the parti-
tion manager in production can sort keys incorrectly in some
corner cases. If resource is not a concern, we can afford to
run a correctness checker to catch these corner cases. But in
reality, we need to prioritize checking with limited resources.
Such correctness checking would yield diminishing returns.

Approaches. There are three general approaches to checker
construction (Table 2). The simplest one is a probe-based
checker which acts like a special client and invokes the soft-
ware’s public APIs with pre-supplied input. For example, a
checker for kvs can keep submitting SET and GET requests and
check if the requests succeed; this approach resembles appli-
cation spies [27], observers [22] or Apache mod_watchdog [1].
The accuracy of a probe checker is perfect: any error it de-
tects is a true violation of the contract the software provides.

However, the probe checker suffers from incompleteness: if
the program has numerous public APIs, it will be challenging
to cover all of them. Even for a program with few public APIs
like kvs, since probe checkers use some pre-supplied input,
they can miss many corner cases. For example, kvs may fail
to handle requests with a key size larger than 64 B or multiple
SET’s followed by a GET; or, kvs may fail to write/replicate/-
compress the data even when it returns success from a SET

request. Another weakness of the probe checker is its inability
to localize what might cause the failure (e.g., timeout of SET).

The second approach is to define some system health in-
dicators and then write a checker to monitor each one. The
Linux watchdog daemon [5] is such an example. Its checkers
monitor whether the process table is full, important files are
accessible, certain IP addresses can be pinged, the load aver-
age is too high, etc. The signal checker is good at detecting
environment/resource faults. But its accuracy is weak. For
example, when the checker finds kvs’s request queue is full
or the memory usage is high, kvs might in fact be processing
a continuous stream of requests without error. Writing such
checkers thus requires knowing failure patterns beforehand
and needs significant tuning to be accurate.

In the third approach, a checker selects important opera-
tions from the main program, mimics them and detects errors.
Since the mimic checker exercises similar code logic in a
production environment, it can catch both faults external to
the program (e.g., bad network, low free memory) and defects
in the software. For example, the disk checker module in
HDFS initially only checked directory permissions, but later
it was enhanced [3] to create some files and invoke functions
from the DataNode main program to do real I/O in a similar
way. Besides detection, the mimic checker can pinpoint the
failing instruction and error information. The challenge with
this approach is how to systematically select operations from
the main program and mimic them in the checker.

A system can design all three types of watchdogs in combi-
nation to complement each other. Probe and signal watchdogs
are lightweight and easy to construct. Mimic watchdogs are
powerful but require deeper domain knowledge about the
system to write. Mimic watchdogs can also benefit from the
end-to-end view of probe watchdogs. So when a mimic watch-
dog detects a potential partial failure, it can invoke a probe
checker to validate the impact of the failure.

4 Toward Generating Watchdogs
It is time-consuming for developers to manually write good
watchdogs, and it is challenging to get it right – e.g., in-
cautiously written watchdogs can miss checking important
modules, use inconsistent checking policies, alter the main
execution, invoke a dangerous operation, corrupt main data
structures, etc. Moreover, the watchdog needs to be kept con-
sistent with the main program as the software evolves. These
problems are particularly acute in the desirable mimic-type
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public class SyncRequestProcessor {
 public static void serializeSnapshot(DataTree dt, ...) {
    ...

    dt.serialize(oa, "tree");
  }
}
public class DataTree {
  public void serialize(OutputArchive oa, String tag) {
    scount = 0;
    serializeNode(oa, new StringBuilder(""));
    ...
  }
  public void serializeNode(OutputArchive oa, ...) {
    DataNode node = getNode(pathString);
    if (node == null)
      return;
    String children[] = null;
    synchronized (node) {
      scount++;
      oa.writeRecord(node, "node");
      children = node.getChildren();
    }
    path.append('/');
    for (String child : children) {
      path.append(child);
      serializeNode(oa, path); // serialize children
    }
  }
}

locate vulnerable operation
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Figure 2. Reducing a code snippet from ZooKeeper.
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public class SyncRequestProcessor$Checker {
  public static void serializeSnapshot_reduced(
       OutputArchive arg0, DataNode arg1) {
    arg0.writeRecord(arg1, "node");
  }
  public static void serializeSnapshot_invoke() {
    Context ctx = ContextFactory.
       serializeSnapshot_reduced_context();
    if (ctx.status == READY) {
      OutputArchive arg0 = ctx.args_getter(0);
      DataNode arg1 = ctx.args_getter(1);
      serializeSnapshot_reduced(arg0, arg1);
    }
    else
      LOG.debug("checker context not ready");
  }
  public static Status checkTargetFunction0() {
    ...
    serializeSnapshot_invoke();
    ...
  }
}

Figure 3. A checker generated for Figure 2.

watchdogs as they are mimicking the original program. To ad-
dress these issues, we propose a method using static analysis
to automatically generate mimic-type watchdogs that follow
the principles described in Section 3. The core technique
behind this method we call program logic reduction.

4.1 Program Logic Reduction
Given a program P, we want to create a watchdog W that can
detect gray failures in P without imposing on P’s execution.
One approach is to extract a set of program slices [33] of
P that are involved in handling each type of API request,
and periodically execute them in W . But such slices would
include substantial portions of P in practice, which are not
only heavyweight but also challenging to pinpoint faults.

We instead propose to derive from P a reduced but repre-
sentative version W , which nonetheless retains enough code
to expose gray failures. Our hypothesis that such reduction is
viable stems from two insights. First, most code in P need not
be checked at runtime because its correctness is logically de-
terministic – such code is better suited for unit testing before
production and thus should be excluded from W . Second, W ’s
goal is to catch errors rather than to recreate all the details of
P’s business logic. Therefore, W does not need to mimic the
full execution of P. For example, if P invoked write() many
times in a loop, for checking purposes, W may only need to
invoke write() once to detect a fault.

We design the reduction algorithm as follows. First, we ex-
tract code regions that may be executed continuously. In this
way, we exclude checking for code execution in the initializa-
tion stage. Multiple long running regions may be identified.
For example, in ZooKeeper, it could include regions in the
replication workflow, the request processor, and the snapshot
service. Then for each such code region, we are interested in
only retaining operations that are worthy of monitoring. Our
criteria for selecting such operations are those that are vulner-
able to fail in production due to either environment issues or
bugs, such as I/O, synchronization, resource, and communica-
tion related method invocations. We also support annotations
for developers to tag customized vulnerable methods. We then
construct a checker C by extracting all vulnerable operations
in a function, removing similar vulnerable operations, and
performing a global reduction along the call chains.

C at this point cannot be directly executed, however, due
to uninitialized variables or parameters. So we further ana-
lyze the context required for the execution of C. A context
factory with APIs for W to manage the dependent context of
C will be generated. We then enhance C with runtime checks
based on the extracted operations to detect both safety and
liveness violations. Finally, we insert context API hooks in P
to synchronize state.

4.2 Preliminary Results
We have built a prototype, AutoWatchdog, that implements
the above watchdog generation method. Its core component
is written on top of the Soot [32] framework and thus only
supports Java bytecode-based software. But the proposed tech-
nique is not Java-specific. AutoWatchdog provides a generic
watchdog driver and checker recipes for scaffolding. Develop-
ers can optionally specify in the configuration what types of
system-specific operations might be vulnerable. AutoWatch-
dog will try to locate these operations when performing the
program reduction. All the generated checkers will be added
to the watchdog driver, which manages the checker executions
at runtime. In the end, AutoWatchdog instruments the main
program with the watchdog hooks and packages the watchdog
driver including the checkers into the original software.

We have been able to successfully apply AutoWatchdog
to three pieces of large-scale real-world system software –
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ZooKeeper, Cassandra and HDFS – and generate tens of
checkers for each. Figure 2 shows an example from ZooKeeper
that AutoWatchdog analyzed. In reducing the serializeSnapshot
function, AutoWatchdog keeps following the callees and de-
termines line 20 is potentially vulnerable. As shown in Fig-
ure 3, AutoWatchdog eventually generates a reduced version
of the serializeSnapshot function that retains the identified
vulnerable operation, along with a checker that invokes the
reduced function. In addition, AutoWatchdog instruments
a hook between line 19 and line 20 in Figure 2 to prepare
context for the reduced function.

We reproduced a real-world gray failure in ZooKeeper [7]
to test the generated checkers. In this example, a network issue
causes a remote sync to block in a critical section, hanging
all write request processing. ZooKeeper’s heartbeat detection
protocol and admin monitoring command [8] both showed
the faulty leader as healthy during the entire failure period,
whereas our generated watchdog detected the timeout fault
in around seven seconds and pinpointed the blocked function
call with a concrete context.

5 Discussion
5.1 Challenges
We now describe several open challenges in automating mimic-
type watchdog construction. Our analysis to detect what op-
erations are vulnerable requires some domain knowledge,
and to fully automate this analysis remains a challenge. Cur-
rently, we catch failure signatures from a reduced code snip-
pet through generic checks based on the types of operations.
This works well for liveness issues and common safety vio-
lations, but the watchdog could benefit from incorporating
more semantic checks. The watchdog detection may also be
superfluous if the main program can successfully handle the
detected fault. To reduce false alarms, we need to further
assess the impact of the fault, e.g., through invoking probe-
checkers when mimic-checkers detect faults. The isolation of
watchdogs also needs to be further enhanced. We currently
can prevent memory side effects with a context replication
mechanism and common I/O side effects with a redirection
mechanism; however, they are imperfect for complex I/O pat-
terns. Sharing the same address space with the main program
also means a wild pointer in main program may subvert the
watchdog. To prevent this would require a memory protection
mechanism for the watchdog.

5.2 Opportunities

Cheap Recovery. Rebooting is often an effective recovery op-
tion, especially for non-deterministic failures, but full restart
is expensive. With the detailed localization information from
our watchdogs, we can expedite recoveries by replacing cor-
rupted objects, threads, files, etc. to quickly restore the service.
Techniques like microreboot [14] can potentially integrate
well with watchdogs.

Failure Reproduction. It is notoriously difficult to reproduce
production failures [35]. Since mimic-type watchdogs not
only isolate the faulty code regions but also capture the failure-
inducing context (e.g., a corrupt message), developers can
leverage the recorded information for failure reproduction
and postmortem analysis.

6 Related Work
Failure detectors have been extensively studied (e.g., [10,
15, 25–27]), but they primarily focus on externally detecting
fail-stop failures in large distributed systems. We focus on de-
tecting and localizing partial failures within a process. Several
projects attempt to generate checks for software. Daikon [18]
infers likely invariants of a program from its dynamic exe-
cution traces. InvGen [21] uses a combination of static and
dynamic analysis to generate invariants. These checks are
mainly for in-place assertions. AutoWatchdog targets gen-
erating concurrent checkers for intrinsic watchdogs, and it
could benefit from these semantic checks. PCHECK [34]
extracts configuration usage with program slicing to detect
latent misconfiguration during initialization. We focus on syn-
thesizing checkers for monitoring long-running procedures of
a software in production by using a novel program reduction
technique. Failure sketching [24] uses slicing and control flow
tracking to generate a sketch for a given failure to ease debug-
ging, which is complimentary to our proposed technique and
goal. Hardware designers have explored using a watchdog
co-processor to concurrently detect control-flow and memory
access errors in the main processor [28]. Our concurrent error
detection scheme is inspired by this classic design. We ex-
plore this scheme in the software domain where the watchdog
is intrinsic to the main program and needs to catch a variety
of safety and liveness violations.

7 Conclusion
As systems software becomes increasingly complex and fails
in ever more subtle ways, there is a strong need for intrinsic,
customized failure detectors – watchdogs. We propose an
abstraction for robust concurrent watchdog design. Among
several flavors of watchdogs, mimic-type watchdogs are par-
ticularly powerful, but writing them is challenging. To address
this gap, we propose a method that analyzes the source code
of a given program and automatically generates mimic watch-
dogs by reducing the main program. Our preliminary results
show the approach to be promising for real-world software.
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