
Deriving Semantic Checkers from Tests to Detect Silent Failures in
Production Distributed Systems

Chang Lou1 Dimas Shidqi Parikesit1,2 Yujin Huang3 Zhewen Yang4 Senapati Diwangkara4

Yuzhuo Jing5 Achmad Imam Kistijantoro2 Ding Yuan6 Suman Nath7 Peng Huang5

1University of Virginia 2Bandung Institute of Technology 3Pennsylvania State University
4Johns Hopkins University 5University of Michigan 6University of Toronto 7Microsoft Research

Abstract
Production distributed systems provide rich features, but vari-
ous defects can cause a system to silently violate its semantics
without explicit errors. Such failures cause serious conse-
quences. Yet, they are extremely challenging to detect, as
it requires deep domain knowledge and substantial manual
efforts to write good checkers.

In this paper, we explore a novel approach that directly de-
rives semantic checkers from system test code. We first present
a large-scale study on existing system test cases. Guided by
the study findings, we develop T2C, a framework that uses
static and dynamic analysis to transform and generalize a test
into a runtime checker. We apply T2C on four large, popular
distributed systems and successfully derive tens to hundreds of
checkers. These checkers detect 15 out of 20 real-world silent
failures we reproduce and incur small runtime overhead.

1 Introduction
Distributed systems today provide rich features through hun-
dreds to thousands of APIs, parameters, commands, etc. How-
ever, various faults can cause a system to silently violate its
semantics without explicit errors. For instance, a distributed
message service that provides a publish API promising at-
most-once semantics may deliver some message twice.

Despite the silent symptoms, such failures lead to severe
consequences including data loss,wrong results, inconsistency,
and vulnerabilities. The failure impact is further propagated
to applications that rely on the affected semantics. The lack of
explicit error signals allows these failures escape existing fail-
ure detectors [57, 67, 76]. Moreover, with few error messages,
developers are clueless in debugging failures.

Ideally, bugs causing silent failures should be eliminated
in testing. However, it is elusive to eliminate all bugs in
production distributed systems. Indeed, a recent study shows
that silent failures are prevalent in mature, extensively-tested
distributed systems [68]. They take up 39% of all studied
failures. Recent studies from multiple cloudcompanies suggest
that silent violations can come from not only software bugs
but also mercurial CPU cores [37, 55, 84].

Therefore, there is a pressing need for runtime verifica-
tion [53], a safeguard mechanism to continuously monitor a
deployed distributed system and quickly detect silent failures

at the scene. Central to this mechanism are a set of checkers
that validate system semantics, e.g., at-most-once delivery.
We call them semantic checkers and distinguish them from
generic checks (e.g., for CPU usage, timeouts, and exceptions).

Since semantic checkers require system-specific knowledge,
the conventional wisdom is that they have to be written
manually. For large distributed systems, this is a daunting
task. Unlike prior runtime checking works [32,49,65,66] that
focus on checking small programs or a handful of well-defined
properties for protocols, the systems we target have abundant
loosely-defined semantics. Even for semantics described in
simple text informally, mapping them to a concrete, correct
checker is not easy. One needs to deeply understand both the
system code and behavior to decide what needs to be checked,
what is expected, when should the check be triggered, etc.

The thesis of this paper is that it is feasible to automatically
construct semantic checkers that are expressive and accurate
for large distributed systems without significant manual efforts.

We observe that a distributed system’s test cases often con-
tain valuable information about the system semantics, which
we can leverage to synthesize semantic checkers. There are
solutions [41, 47, 52] that use statistical methods to automat-
ically infer likely invariants from software execution traces
(often obtained from running a test suite). Those inferred
invariants only express program variable relations, which are
too low-level to check system semantics. Many of the inferred
invariants are false due to inaccuracies in statistical inference.
A recent work [68] leverages regression tests for past failures
to infer event relationship, but it has the same limitations.

Our key insight is that the test code encodes rich informa-
tion, including semantics-specific oracles—assertions, and
carefully-designed workloads (e.g., Figure 1). This rich infor-
mation is not leveraged in existing solutions. But if existing
tests contain expressive checks, why do they still fail to prevent
silent failures? This is because they are written in a way that
is tied with specific input in a fixed setup, while the relevant
semantics can be violated in production due to different bugs
triggered by other inputs and dynamic conditions.

Based on the above observation and insight, we propose a
novel approach that leverages the existing test codes developers
already wrote and directly transforms them into semantic
checkers. Our basic idea is to reuse the code skeleton of a

test case, but we relax its strict constraints to generalize the
test into a parameterized checker function. The generated
checkers can then be deployed with the system to production
and activate under workloads different from the original tests
to detect new semantic violations.

We design an end-to-end framework, T2C, that realizes this
idea. T2C reduces manual efforts and generates checkers that
are expressive and accurate to cover various system semantics.

Achieving the above objectives is extremely challenging.
First, test code contains a mixture of instructions and many
instructions are not applicable to a semantic checker. Second,
test code is inherently written to check specific instances,
while a useful checker needs to apply in other instances. Third,
a test only applies in certain scenarios. We need to determine
the precondition for the derived checker, which is not clearly
specified in the test. The practices of writing tests also vary,
even for tests from the same system.

It is important to recognize that, without domain knowl-
edge, automatically generalizing all test cases into checkers
is impossible. T2C aims to synthesize a significant number
of checkers from existing tests to provide comprehensive
coverage of semantics.

To understand the feasibility of our approach, we conducted
a large-scale study on 210 test cases from six distributed
systems. The study found that interestingly many test codes
in practice have clear patterns to leverage for transformation
and generalization, e.g., the use of test utility function, simple
relations between assertions and the workloads.

Guided by our study, T2C leverages a combination of static
and dynamic analyses to transform existing test code into
reusable semantic checkers. At a high level, T2C statically
identifies the key checking logic embedded in test cases—
typically assertions tied to important system behaviors—and
repackages them into standalone checker functions. To ensure
these checkers are meaningful beyond the original test context,
T2C then dynamically analyzes the system and test code to
trace relevant data and control flows. This enables T2C to
extract the necessary preconditions under which the behav-
ior should hold. By combining preconditions with checker
functions, T2C produces semantic checkers that are both
precise and generalizable. Finally, T2C performs multi-level
validation on the synthesized checkers to ensure they are valid.

We have applied T2C on four widely-used distributed sys-
tems, ZooKeeper, Cassandra, HDFS and HBase. T2C success-
fully transforms 672 test cases in these systems into verified
semantic checkers. We sample and reproduce 20 user-reported
production silent failures, and the synthesized checkers detect
15 of them in a median of 0.188 seconds. Interestingly, most
test cases from which the checkers are derived were added by
developers long before the failures.

The main contributions of this work are as follows:
• We proposed a novel approach to synthesize semantic check-

ers from test code and presented a large-scale study on
existing tests to validate the feasibility of this approach.

1 public void testSessionTimeout() {
2 DisconnectableZooKeeper zk = createClient(TIMEOUT);
3 zk.create("/stest", new byte[0], OPEN_ACL, EPHEMERAL);
4 zk.close();
5 zk.disconnect();
6 zk = createClient(TIMEOUT);
7 Assert.assertTrue(zk.exists("/stest",false) != null);
8 Thread.sleep(TIMEOUT*2);
9 Assert.assertTrue(zk.exists("/stest",false) == null);

10 zk.close();
11 }

Figure 1: A test from ZooKeeper that validates the semantics of
ephemeral znodes. The test creates an ephemeral znode (/stest),
disconnects the client, and checks whether the znode is correctly
removed after the session timeout.

• We designed T2C, an end-to-end framework that uses a
hybrid of static and dynamic analysis techniques to realize
the proposed approach for large distributed systems.

• We evaluated T2C on widely-used distributed systems, and
showed its effectiveness on synthesizing expressive checkers
that can detect production silent failures.
T2C is open-sourced at https://github.com/OrderLab/T2C.

2 Background and Motivation
In this section, we first use a real example to elaborate on our
insight and proposed approach. We then present a feasibility
study on existing test cases in popular distributed systems.
2.1 Example

ZooKeeper is a distributed coordination service that ex-
poses hierarchical namespace of data called znodes. One
feature it provides is ephemeral znode, the semantics of which
guarantees that (i) an ephemeral znode exists for as long as
the creating client’s session, and (ii) it is deleted once the
associated session ends. In a real-world silent failure [22],
users observed that some ephemeral znodes were not removed
even after the client session was long gone. This failure oc-
curred not because the ephemeral znode semantics was not
tested. Like other popular distributed systems, ZooKeeper has
test cases for all major features including ephemeral znode.
Figure 1 shows a test that exists prior to this failure.

However, the test cases are written to check only a few
specific examples, e.g., /stest in Figure 1, in a controlled
setup. Passing the test cases does not imply that the system
can obey the tested semantics once deployed. The production
system in this case encountered a rare concurrency bug. This
buggy condition does not appear in the test setup.

Nevertheless, the test does explicitly check the semantics.
It includes two assertions (line 7 and 9) that describe the two
guarantees of ephemeral znode. It also includes workloads
that exercise the semantics (line 3–5).

To leverage this test for detecting failures in production, we
may attempt to directly reuse it (with some changes so the zk
client checks against the production instance instead of the
testing instance). This would work if the ephemeral znode that
violated the semantics happened to be exactly /stest, or if

https://github.com/OrderLab/T2C

Software Language Category Version Tests

Total Sampled

ZooKeeper Java Coordination 3.4.11 434 35
Cassandra Java Database 3.11.5 4118 35

HDFS Java File Sys. 3.2.2 3265 35
MongoDB C++ Database 7.1.0 1276 35
CephFS C++ File Sys. 1.11.0 506 35
Mesos C++ Cluster Mgr. 18.2.0 233 35

Table 1: Sampled test datasets from six studied systems.

the bug affected all ephemeral znodes. Neither was the case:
only some znodes were affected in the production failure and
they did not have the tested example path /stest.

The problem here is that the checking logic in the test is
too restrictive. If we relax it, it is possible to retrofit the test
into a more general checker. For example, by symbolizing the
concrete arguments in it (/stest, etc.), we can transform the
assertions and related statements into a parameterized checker
function, which can be invoked with other arguments.

2.2 Feasibility Study
The example above is promising. However, not all tests are like
it. Some tests may not have assertions for system semantics,
or their assertions may be too specific to convert into a more
general checker. To understand the feasibility of our approach,
we conduct a study on existing test cases in six popular
distributed systems shown in Table 1. We randomly sample
210 test cases to analyze, with 35 cases for each system.

For each case, we seek to answer the following main ques-
tions: (1) do tests contain useful semantic checks? (2) how is
the checking done? (3) can the checking logic be generalized
from tests to production settings?

The majority (87%) of the studied tests use standard asser-
tions, such as assertTrue and assertEquals, as the check-
ing mechanisms. The remaining tests do not have any explicit
assertions. They are either performance benchmarks or check-
ing by throwing an exception. These tests are typically not
designed to expose semantic violations.

Finding 1: Most sampled tests contain explicit assertions to
check the system semantics.

Hereinafter, we focus on the 183 tests that use assertions
(which percentages presented will be based on). We summarize
their checking approaches into several patterns (Figure 2):

• Check if the result of one operation matches the input to
preceding operations, e.g., the test writes something to a file,
and checks by reading from the same file and comparing if
the result matches the argument in the write operation.

• Check the consistency of a workload. For example, one
HDFS test case selects several target nodes for storing a file;
it then uses an assertion to verify whether these target nodes
reside in different racks.

• Check whether the return result matches the impact of some
operation or expected status of the system. For example,

Expected
Value

Consistency Magic
Value

Proceding
Input

0%

20%

40%

P
e
rc

e
n
ta

g
e

Cassandra
Ceph
HDFS

Mesos
MongoDB
ZooKeeper

Figure 2: Assertion type distribution (Finding 1).

testAbortNewFileAfterFlush writes a file but shortly aborts
it; it then verifies that the destination directory is empty:
assertEquals(0, testDir.list().length)

• Comparing the result of an operation with a “magic
value”, which is a constant predefined by developers. For
example, ASSERT_EQ(url_unescape("foo%20bar"), "foo bar")

checks the url_unescape operation correctly decodes the
input string. The constant "foo bar" is a magic value.

In the first three patterns, the checking is based on contexts
within the tests. For the last pattern, the magic value is hard-
coded, so deducing why it is expected can be difficult. Among
the 183 tests, 37 (20%) tests have the last pattern.

Finding 2: Checking is typically based on contexts within a
test, but 20% tests check by comparing with magic values.

Since the assertion checking involves comparing with an
expected value, we examine the constraints between the ex-
pected values in assertions and other values in the test to figure
out how to get the expected value in a semantic checker.

Interestingly, in many tests, the expected values in assertions
do not need to be changed even if the workload varies, such
as true, 0, or system configuration. Figure 1 is an example:
even if the path changes, the expected value null holds.

When the expected values do vary, it is common for
them to have simple equality relation with other val-
ues in the test. For example, a Cassandra test uses an
assertion assertEquals("CREATE ROLE role1",obfuscate("CREATE

ROLE role1")). The expected value can be simply inferred from
the argument to the obfuscate. In other cases, the assertions
use a defined variable from the workload as the expected value.
Thus, we can directly find the source of the expected value.

The constraints in 117 (64%) tests fall into the above three
categories (constant, equality, same variable). In another 26
(14%) tests, the constraints are simple arithmetic relations,
such as greater than, or smaller than.

Finding 3: In the majority of the tests, the constraints of
the expected values are simple, because they do not need to
change, or equal some other values, or directly use variables
defined in the workload, or are basic arithmetic relations.

In the remaining 40 (22%) tests, the constraints cannot be in-
ferred without domain knowledge. They use magic values that
do not have simple relations with other values in the test. For
example, in ZooKeeper test case testValues, to get the expected
values in assertEquals(14L, values.get("sum_key2_test"), we
need to guess the operation from the string, and then calculate

the result. These steps cannot be automated without further
knowledge. The assertion for url_unescape is another example.

Finding 4: In a non-negligible number of tests, the expected
values cannot be easily inferred from other values in a test.

Besides using assertions directly in the test function, 40
(22%) tests invoke some utility functions that perform the
checking. These functions are written to ease setup or result
checking and are modular. They contain rich domain-specific
logic. One function is often used by multiple test cases.

Finding 5: Using utility functions is a common practice in
tests, which can be leveraged in creating semantic checkers.

We explore if the checking logic can be generalized from
tests to production by replacing specific instances. Some
tests use magic values, making them hard to generalize.
Even if expected values are replaceable, assertions may
not apply in production due to special configurations. For
example, in the Cassandra test createSuccess, the assertion
assertFalse(tmd.params.compression.isEnabled()) only works
if compression is disabled.

Interestingly, we find the tests to be more general than we
anticipated. Of the 183 tests with explicit assertions, 65%
satisfy both requirements of generalization: (1) the constraints
of expected values are easy to infer; (2) the checked semantics
are not limited to just special configurations or corner cases.

Finding 6: Almost two thirds of the tests have checking logic
that can be generalized to production.

Finally, we examine if the assertions in the tests involve
disruptive actions, such as deleting files or restarting the
cluster. If so, invoking the checkers in production may pose
risks. While many test cases involve such dangerous operations,
they are part of the workload. When we retrofit a test into a
semantic checker, the checker does not exercise the workload.
It waits for the clients or users to execute these operations in
production, and activates the assertions afterward.

Finding 7: Although a test workload may contain disruptive
operations, the assertions do not perform such operations.

2.3 Implications
While transforming tests into runtime checkers is an ambitious
goal, our study shows that it is promising. Existing tests contain
valuable semantic information. Since most tests use assertions
as the checking mechanisms (Finding 1), we can recognize
their checks from standard interfaces. Findings 3 and 6 imply
that deriving a checker function more general than the test is
feasible, as the expected values can adapt to different instances.
Moreover, the values used in assertions often have simple
relations with other values in the workload, thus inferring
the constraints to avoid over generalization is possible. The
modularity from utility functions commonly used in test cases
(Finding 5) also eases the transformation.

Nevertheless, we identify two primary challenges with this

test case

checker

f(x)

target
system

verifier

variants

f(x)

violations!

ProductionOffline

analysis &
transformation

mutation

p(x), r
satisfy

invoke
f(x)

validation
rp(x)

p′(x) r

f(x)

p"(x) r

Figure 3: Workflow of T2C.

approach. First, a test contains code that both exercises a
system and checks if the system behaves properly, while a
checker is only responsible for the latter. Thus, our solution
needs to decouple the two and make the checks standalone.
Second, identifying the checker precondition is not easy. The
checker should only be invoked when the production system
exercises the semantics relevant to the test. In addition, the
original test only uses a few example inputs, but the checker
should also apply on inputs from production.

In the general case, both challenges are too hard to address
automatically without domain knowledge. Some restrictive
tests are also unnecessary ornot applicable to run in production.
We thus do not target transforming all tests but instead aim to
transform a decent number of promising tests to fill the void
of semantic checkers in large distributed systems.

3 Overview of T2C
Informed by our study, we design T2C, an end-to-end frame-
work that transforms existing test cases into semantic checkers
to detect silent failures in production distributed systems. Our
framework assumes that checkers derived from specific test
inputs or setups generalize reasonably well to broader scenar-
ios encountered in production. This assumption is supported
by our empirical study (Section 2.2).

Different from existing solutions, T2C directly leverages
the test code and takes a transformation approach. It preserves
the code structure of a test while extracting and generalizing
the essential checking logic. T2C does not require a large
number of traces for statistical inference. Moreover, unlike
the state-of-the-art solution that relies on regression tests of
past failures [68], T2C targets any unit tests or integration
tests. T2C aims to not only reduce the manual effort but also
generate checkers that are accurate and expressive enough to
capture a wide variety of system semantics.

T2C is designed to be a monitoring system, where checkers
only provide failure alerts and diagnosis clues to operators;
they do not automatically mitigate failures (by crashing or
restarting the system). This scope is the same as existing mon-
itoring tools. T2C enhances existing solutions with stronger
checks to reliably detect silent failures with low false alarms.

Problem Statement. Given a test case T, T2C aims to derive
a runtime checker C that verifies the system semantics tested
by T. The checker C consists of three components: (1) 𝐶 𝑓 , the

create($0)
append($0,...)
allowSnapshot($1,)
createSnapshot($1, $2)
append($0)

Verifying semantics:
public static void generatedAssertionFunc0 (
 FileSystem hdfs, Path sub, String snapshot1,
 String file1Name, Integer origLen) {
 Assertion.appendCustomAssert(...);

 Path file1snap1 = SnapshotTestHelper.
 getSnapshotPath(sub, snapshot1, file1Name);
 byte[] dataFromSnapshot = DFSTestUtil.
 readFileBuffer(hdfs, file1snap1);
 assertThat("Wrong data size in snapshot.",
 dataFromSnapshot.length, is(origLen));
}

public void testSnapshotfileLength() {
 ...
 Path file1 = new Path(sub, file1Name);
 DFSTestUtil.createFile(hdfs, file1, BLOCKSIZE,
 0, BLOCKSIZE, REPLICATION, SEED);
 DFSTestUtil.appendFile(hdfs, file1, origLen);
 // Create a snapshot on the parent directory.
 hdfs.allowSnapshot(sub);
 hdfs.createSnapshot(sub, snapshot1);

 Path file1snap1 = SnapshotTestHelper.
 getSnapshotPath(sub, snapshot1, file1Name);
 // Append to the file.
 FSDataOutputStream out = hdfs.append(file1);
 AppendTestUtil.write(out, 0, toAppend);
 byte[] dataFromSnapshot = DFSTestUtil.
 readFileBuffer(hdfs, file1snap1);
 assertThat("Wrong data size in snapshot.",
 dataFromSnapshot.length, is(origLen));
 ...
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 symbolic precondition

original test code parameterized checker function

manifest for the checker

{ "source": "testSnapshotfileLength",
 "precondition": [
 {"call": "create", $0, ...}, ...],
 "function": {"args": [$0,$1,$2,...], ...},
 "constraints": ...
}

Once snapshot is
enabled and
created, each
HDFS snapshot at
that point should
be immutable: file
length unchanged
even after append.

!"

!#

!#
!"!$

Figure 4: Example of checker T2C generated for a test in HDFS.

parameterized checker function; (2) 𝐶𝑝 , the symbolic checker
precondition; (3) 𝐶𝑟 , the constraints that include relations
between parameters, constant values for specific parameters,
and system configurations.
Input and Output. To apply T2C on a new system, developers
need to provide a configuration file that describes the code
structure information (e.g., path to system packages and test
packages) and the compilation instructions. T2C will use
these information to automatically analyze and execute tests.
In addition, developers need to specify a few core system
classes for instrumentation.

T2C outputs a list of checker functions as well as one
manifest file (in JSON format) for each checker function. The
manifest file records metadata for the checker, such as the
source test name, the precondition, and the constraints.
Workflow. Figure 3 shows the high-level workflow of T2C,
which consists of two phases: offline and production.

In the offline phase, T2C performs static analysis and dy-
namic analysis on the given test case 𝑇 . Figure 4 shows
an example of the semantic checker that T2C automatically
derives from a non-trivial HDFS test case. It identifies the
checking related instructions in the test, and transforms them
into a standalone checker function 𝐶 𝑓 . It also derives the sym-
bolic precondition 𝐶𝑝 as well as the constraints 𝐶𝑟 . During
this process, a key goal is to relax the constraints in 𝑇 , so that
the checker can apply on more general scenarios. However,
if 𝑇 is written too restrictively, the derived 𝐶 may not be
general enough. To address this problem, T2C further intro-
duces a mutation step that aims to produce variant checkers
by applying some changes to 𝐶𝑝 and 𝐶 𝑓 . After generating a
set of candidate checkers from existing tests, T2C performs
a validation step to filter invalid checkers. Developers can
then further inspect and select from the validated checkers to
deploy together with the target system.

In the production phase, the system runs with the selected
checkers and the T2C verifier. The verifier monitors the system
workload, and evaluates whether any checker’s precondition

𝐶𝑝 and constraints 𝐶𝑟 satisfy. If so, it activates the checker
function 𝐶 𝑓 and passes the concrete arguments accordingly.
When some checker fails, the verifier generates an alert and a
debugging report about the semantic violation.

4 Checker Generation and Validation
This section describes the T2C designs for its offline stage (Fig-
ure 3): checker generation and validation. Checker generation
contains several steps as Figure 5 shows.

4.1 Encapsulate Checker Function
A test case contains many instructions such as preparing input
and invoking system APIs. To construct a semantic checker,
T2C is most interested in extracting the essence—the test
oracle instructions, which contain the correctness criteria
for certain system semantics. As our study shows, most test
oracles are written as assertion instructions.

However, a test oracle instruction alone cannot be directly
used as a runtime checker. The checking logic in the test code
typically contains a series of instructions, so only including
the oracle instruction would be incomplete and not even
executable. For example, in Figure 4, the test oracle is in line
18 (assertThat), but it depends on several other instructions
including calling a helper function to get the snapshot file
path, and defining variable dataFromSnapshot.

T2C uses static analysis to encapsulate the test oracle along
with its related instructions into a standalone checker function.
T2C identifies test oracle in the form of assertions. If a test does
not contain any assertions, T2C will not generate checkers.

Algorithm 1 shows the core algorithm for the checker func-
tion construction. For a given test 𝑇 , T2C first constructs a
control-flow graph (CFG). It then runs backward data-flow
analysis on the CFG. The analysis’ goal is to construct a
parameterized checker function 𝐶 𝑓 , and derive three things:
(1) the set of parameters, 𝑆𝑎, for 𝐶 𝑓 ’s definition, (2) the set of
intermediate variables, 𝑆𝑖 , to declare locally in 𝐶 𝑓 , and (3) the
list of instructions in 𝑇 , 𝑆𝑠, to copy to the 𝐶 𝑓 function body.
Other concepts in the algorithm align with classic dataflow

static
analysis

test
code

checker

F(x)

Px)F(x): checker
function

instrumented
test code

execute

dynamic
analysis

concrete
operations

symbolization,
constraints
inference

P(x): symbolic
precondition

Figure 5: Checker generation workflow in T2C.

Algorithm 1: Checker function encapsulation.
Input: the target test T
Output: constructed checker functions, each 𝐶 𝑓

consists of: Set 𝑆𝑎 of parameters in the
generated function, Set 𝑆𝑖 of intermediate
variables, Set 𝑆𝑠 of instructions to copy to the
generated function

foreach 𝑇𝑜 ∈ 𝑓 𝑖𝑛𝑑𝑇𝑒𝑠𝑡𝑂𝑟𝑎𝑐𝑙𝑒𝑠(𝑇) do
𝑆𝑎 ←∅; 𝑆𝑖 ←∅; 𝑆𝑠 ←∅;𝑊 ← {𝑇𝑜};
do

Take 𝑠 from𝑊 ; if 𝑠ℎ𝑜𝑢𝑙𝑑𝐸𝑥𝑐𝑙𝑢𝑑𝑒(𝑠) then
continue;

𝑂𝑢𝑡[𝑠]←⋃𝑠′∈𝑠𝑢𝑐𝑐(𝑠) 𝐼𝑛[𝑠′];
𝐼𝑛[𝑠]←𝐺𝑒𝑛(𝑠)∪(𝑂𝑢𝑡[𝑠]∖𝐾𝑖𝑙𝑙(𝑠));
𝑆𝑖 ← 𝑆𝑖 ∪ 𝐼𝑛[𝑠]; 𝑆𝑠 ← 𝑆𝑠 ∪ 𝑠;𝑊 ←𝑊 ∪ 𝑝𝑟𝑒𝑑(𝑠);
𝑆𝑎 ← 𝐼𝑛[𝑠];

while𝑊 ≠∅
𝑆𝑖 ← 𝑆𝑖 ∖𝑆𝑎; 𝐶 𝑓 ← 𝑜𝑢𝑡𝑝𝑢𝑡(𝑆𝑖 , 𝑆𝑠 , 𝑆𝑎)

analysis: shouldExclude determines whether a statement
should be omitted from the checker. It is used to filter out
operations that are dangerous for runtime checking, such as
system restarts. In[s] and Out[s] represent the input and
output dependencies of a statement 𝑠, capturing the relevant
variables when 𝑠 is reached (In[s]) and when 𝑠 is exited
(Out[s]). Kill(s) is a helper function that returns old vari-
ables removed by statement 𝑠. Gen(s) is a helper function
that returns new variables introduced by statement 𝑠.

The analysis starts by identifying the test oracle (assertion)
𝑇𝑜. To compute 𝑆𝑠 , we use the program slicing algorithm [86]
which includes the 𝑇𝑜 and its dependent instructions. The
main dependencies are calculated based on 𝑆𝑖 .

To compute 𝑆𝑎 and 𝑆𝑖 , the analysis identifies all the values
used in each expression in 𝑇𝑜. Those values are to be defined
in 𝐶 𝑓 . We need to distinguish whether they should be local
variables or function arguments.

Our basic idea is that a value by default is in 𝑆𝑎 (an ar-
gument), but if it is derived from other values, we move it
to 𝑆𝑖 and add its source values to 𝑆𝑎. To do so, the analysis
recursively follows the use-def chains until it reaches values
that are “out-of-scope”—either constants or variables defined
outside the test case function. Those values are put in 𝑆𝑎,
while the values along the chains are in 𝑆𝑖 . The rationale for
this analysis is that arguments naturally come from external

sources, while local variables are to assist checker execution.
Take Figure 4 as an example. The algorithm will start

from the assertion statement in line 18, which is simple to
locate. This assertion includes two workloads with variables
dataFromSnapshot and origLen. The algorithm’s goal is
to identify how to construct these workloads for runtime
checking. Thus, it traverses backwards, analyzing each pre-
ceding statement. For example, when analyzing line 16, the
algorithm finds out dataFromSnapshot is generated by a
function call readFileBuffer. Thus the algorithm marks
this statement to include in the checker function, and add
the parameters of hdfs and file1snap1 to the tracking set
instead of dataFromSnapshot. This process continues until
the start of the test is reached. Eventually the algorithm marks
all related statements (lines 11, 16, 18) to include, as well
as a list of parameters (hdfs, sub, snapshot1, file1Name,
origLen) for this checker function.

T2C also includes relevant branch instructions to 𝑆𝑠 and
variables used in the branch conditions in computing 𝑆𝑎 and
𝑆𝑖 . Thus, the derived 𝐶 𝑓 preserves 𝑇’s control-flow structure.

At the end,T2C defines𝐶 𝑓 with 𝑆𝑎 andconstruct the checker
body with 𝑆𝑠 and 𝑆𝑖 . T2C automatically fills in the missing
parts including variable initialization and type conversion.
It also handles name aliases—any statements that introduce
aliases are included through data-flow propagation, since the
algorithm constructs slices based directly on explicit data and
control dependencies.
Side Effects. Our slicing algorithm does not provide soundness
guarantee. It may include operations with side effects, e.g.,
write. Some test instructions could be even dangerous to
apply in production, such as delete. Those instructions are
part of the original test workload but should not be included
in 𝐶 𝑓 , because a checker should mainly observe production
system state and not exercise workload. It should wait for
some client or user to invoke such operations.

Our above algorithm is able to naturally exclude many
of these instructions in computing backward slices for the
assertions. The HDFS test in Figure 4 is an example. Although
it includes instructions for creating snapshots, appending files,
etc., the checker function T2C derives only reads the file.

However, some instructions may still be included. For
example, if an assertion directly checks the return value of a
write call, the slice will include the write instruction based
on the dependency. To avoid this situation, we refine the slicing
algorithm to stop if it reaches a method that may introduce
side effects to the system. We use purity analysis [80, 88] to
construct a list of side-effecting operations. At the start of the
static analysis phase, T2C analyzes the system call graph and
outputs the side-effecting operation list, which is used in the
encapsulation phase. We also add additional operations for
each system. For example, we add three operations for HBase:
“compact”, “truncate” and “clean”. Even if the list mistakenly
misses some side-effecting operations, these operations will
be exposed in the validation phase (Section 4.4).

1
2
3
4
5
6
7

Seq Operation

createSession(0x10501, 5000)
create("/stest", [], 2)
createSession(0x10502, 5000)
exists("/stest")

assert1
closeSession(0x10501)

assert2

Figure 6: Concrete system operations from running test in Figure 1.

Multiple Assertions. One test may contain multiple assertions.
T2C tries to derive one checker for each assertion separately.
Although it can be appealing to combine multiple assertions
in one checker function for efficiency reasons, it can introduce
complexities. For example, if we encapsulate the two assertions
in Figure 1 into one checker function, we need to decide
whether to include the Thread.sleep instruction (line 8) in
between them. By the slicing algorithm, we will not. But the
second assertion will produce false alarms when the client
session is not gone yet. Including this instruction is not perfect
either, because the sleep timeout does not guarantee that
the session is gone. The true operation to wait for before
invoking the second assertion should be the system operation
closeSession (seq. 6 in Figure 6), which is initiated by
the system rather than the checker. By separating the two
assertions into two checkers, we avoid the complexities. The
second checker uses closeSession as its precondition.
Differences with Traditional Program Slicing. Our algo-
rithm has a few key differences from traditional program
slicing [86]. Program slicing includes all instructions that
influence an assertion, even if they modify the system. T2C
refines slicing by stopping at side-effecting operations using a
combination of static purity analysis and a manually curated list
of known unsafe operations, ensuring that the checker remains
observational. Program slicing may include all control-flow
branches affecting an assertion. Besides extracting relevant
instructions 𝑆𝑠, T2C also identifies (1) the set of parameters,
𝑆𝑎 and (2) the set of intermediate variables, 𝑆𝑖 for checker
construction. Program slicing merges all assertion-dependent
statements into a single slice. T2C separates each assertion
into its own checker to avoid unintended interactions.

4.2 Identify Checker Precondition
The checker function generated in the above step will be
standalone. However, it should only be invoked when the
production system exercises the semantics underlying the
original test. For example, in Figure 4, it will check the HDFS
snapshot’s file immutability semantics, but it is only applicable
if some client in production has requested HDFS to take a
snapshot using relevant APIs. Essentially, each 𝐶 𝑓 has a
precondition 𝐶𝑝 (our usage of the term slightly differs from
Hoare logic), which T2C will derive.
Approach. Our basic idea is to extract code before the asser-
tion that does not directly impact assertion values, treating it
as preconditions. However, setup code like cluster startup is

create("/TestSFL/sub1/file1")
append("/TestSFL/sub1/file1",...)
allowSnapshot("/TestSFL/sub1")
createSnapshot("/TestSFL/sub1","snap1")
append("/TestSFL/sub1/file1",...)
open("/TestSFL/sub1/.snap/snap1/file1")

...

1
2
3
4
5
6
7
8

Seq Operation

assert1

Figure 7: Concrete system operations from running test in Figure 4.

irrelevant to runtime checking and should be excluded. There-
fore, T2C focuses on relevant operations after system runs,
targeting system APIs used during tests. Since static analysis
struggles with identifying target APIs and their arguments due
to wrappers and polymorphism, T2C uses dynamic analysis
on test code to derive preconditions.

4.2.1 Obtain Concrete Precondition

T2C includes an instrumentation library. It adds hooks to the
system interfaces to record information including the operation
type as well as the concrete arguments used. We focus on
entry interfaces on the server code. For example, in HDFS,
T2C instruments public methods in the NameNodeRpcServer
class, such as create and createSnapshot. T2C then executes
the test code and records the instrumented information.

After the test execution, T2C obtains an ordered sequence
of system operation invocations, each with concrete argu-
ments. The next question is how to determine the concrete
precondition from this sequence? T2C treats the subsequence
that occurs before the execution of 𝑇𝑜 as the candidate pre-
condition. To identify this subsequence, the instrumentation
library adds hooks to 𝑇𝑜 in the test code as well, which emits
a record of 𝑇𝑜’s execution in the sequence. However, this
subsequence likely also contains operations that are exercised
to provide arguments to 𝑇𝑜. These operations should be ex-
cluded from the precondition, because they are initiated by the
checking. In other words, they belong to the checker function
𝐶 𝑓 constructed in Section 4.1.

Take Figure 6 as an example, which is the sequence of
operations T2C obtains when running the test in Figure 1.
The 5th operation is the marker T2C emits for the assertion in
line 7 of Figure 1, so that candidate precondition is the first
four operations. However, the 3rd and 4th operations provide
arguments to the assertion, so T2C excludes them. Similarly,
for the sequence T2C obtains from the test in Figure 4, the
precondition includes only the first five operations (Figure 7).

Figures 6 and 7 also show that the operations T2C obtains
in the dynamic analysis are at the system side, which can have
differences with the static names appearing in the test code,
because the test uses many wrappers. Focusing on system-
side operations provides a clean way for T2C to deduce the
precondition despite many test-specific methods. It also allows
the precondition to apply in the production system.

While our heuristic excludes computations that do not
directly affect assertion parameters, these computations may

still affect indirectly, e.g., sorting an array. Such operation will
be either captured during dynamic analysis as precondition
(if sorting is instrumented) or during encapsulation as part of
the checker (if sorting is a library call used in the assertion).

4.2.2 Symbolize Concrete Precondition

The precondition determined from Section 4.2.1 is tied with
the specific workloads in the test. Such precondition is not
very helpful for the in-production checker, because it cannot
apply to scenarios beyond the original test. For example, the
concrete precondition T2C extracts for Figure 1 (also Figure 4)
is tied with one fixed path and does not apply to other paths.

To address this problem, T2C uses a novel idea to symbolize
the concrete values and turn 𝐶𝑝 into a symbolic precondition.
However, we cannot simply turn each concrete value into a
separate symbolic value. We need to identify the constraints
among them, which is challenging in the general case.

Fortunately, our study (Section 2.2) shows that many values
in tests simply have an equality constraint, which is easy to
infer. When encountering a concrete value in a clause that
is equal to an earlier value, T2C assigns the same symbol
rather than a new symbol. Besides equality, T2C also supports
simple constraints such as less than and contains, which our
study shows is also common. For such constraints, T2C will
add them to the checker manifest file, which will be evaluated
as part of the precondition at runtime.

Our constraint inference is not perfect. Two concrete values
that are equal may be a coincidental choice by developers,
which can over-constrain the 𝐶𝑝 during symbolization. For
example, we may symbolize foo("/stest","/stest") into
foo($1,$1), but the second argument can be arbitrary. It
is possible to leverage more information in the test code to
improve the accuracy and support more complex constraints.
We leave this improvement as future work.

Our tool by default does not symbolize enum type parame-
ters as workloads, based on the observation that enum type
parameters are usually part of interface semantics.

4.2.3 Mutate Precondition

The above symbolization step generalizes the precondition.
However, the symbolic precondition can be unnecessarily
restrictive. This happens because the original test only uses
one specific sequence of operations, while the tested semantics
still applies when the sequence changes (slightly). Thus, the
production system can violate the semantics under a similar
triggering condition. For example, instead of calling append
once after createSnapshot as the test in Figure 4 does, a
client in production invokes append multiple times. In this
case, the immutability semantics still applies. Concurrency
may also affect the checker generation process. If the test
execution is nondeterministic, the generated checker results
may have different preconditions corresponding to different
execution sequences. If we use the symbolic precondition
exactly the same as the test, the derived checker will not be

triggered when it can detect the violation.
To address this problem, T2C further relaxes the constraints

of the precondition by mutating it. T2C currently supports
four types of mutation: reduce (remove an operation), insert
(add a wildcard that matches with any operation), duplicate,
and reorder (swap the order of two adjacent operations). For
the above example, we can apply the duplicate mutation to
the append operation in the concrete sequence. T2C takes
a simple enumerative (bounded) approach to try different
mutations in different positions of the precondition sequence.
Each mutation produces a variant precondition 𝐶𝑝′ . It then
relies on the validation step (Section 4.4) to evaluate whether
the variant preconditions are necessary and valid.

4.3 Additional Handling
Control Flow Assertion. We observe that control-flow as-
sertions are also common in tests. Unlike other assertions,
control-flow assertions are designed to be not executed, e.g.,
an Assert.fail. Thus, we can not simply instrument the
assertion itself. To support this type of assertion, T2C flags
the method call before such an assertion. When that state-
ment is executed, T2C emits a special marker in the operation
sequence to indicate that the next operation should fail.
String Queries. Some systems may not have clear operation
interfaces. For example, Cassandra takes input queries as
strings and uses ANTLR to generate parsers. The processing
logic is complex and tightly coupled with other internals,
making it difficult to find instrumentation points. We added a
simple parser that interprets string queries to different system
operations and extracts the operations’ parameters.
System Constraints. We observe that some tests are indented
for only specific system configuration and do not apply when
the system configuration is different. For example, write oper-
ations should not be allowed in “read-only” mode. Thus, we
also need to extract such system configuration constraints. We
find that most configurations are defined in the setup phase
of tests, such as System.setProperty("readonlymode.enabled",

"true"). Before the checker building phase, T2C will search in
test class bytecodes with dynamic analysis libraries, identify
such system property and record in the generated checkers.

4.4 Validate Checkers
Like manually written checkers, the checkers T2C generates
may not always be correct. For example, the encapsulated
checker function may miss some instructions due to the inac-
curacies in static analysis; a complex constraint existing in the
test may not be inferred, so the precondition is too loose.

T2C uses four levels of validations to prune invalid checkers.
The first level is to ensure the derived checker function passes
compilation, i.e., syntactic correctness. The second level is to
ensure the checker function is runnable by leveraging JVM
verifier, which performs various sanity checks.

The third level is a more interesting “self-validation” ap-
proach. T2C first replaces the original assertion statements

in the test with the generated checker function. It then runs
the modified test. The checker function is supposed to pass
because a specific workload should apply in a generalized
version. If the checker function cannot pass its own test, it is
problematic, so T2C marks it as invalid.

Self-validation alone is not enough, so T2C includes a cross-
validation step that simulates a pre-production environment
to assess checker quality. The cross-validation step aims to
remove “over-generalized” checkers, meaning they incorrectly
generalize test-specific invariants to broader runtime contexts.
Specifically, during cross-validation, we run each checker
against workloads from other passing tests (different from
the test from which the checker originated). If a checker
incorrectly triggers alarms during these unrelated but correct
workloads, it indicates that the checker is overly general and
thus producing false positives. Such problematic checkers are
subsequently filtered before deployment. This cross-validation
is particularly effective at filtering out checkers that over-
generalize semantic-specific workloads (e.g., creating a list
of size 0 to check if it is empty, where 0 should remain a
constant). Such checkers are triggered excessively and are
invalidated during cross-validation.

We apply several performance optimizations for the vali-
dation phase. Running all tests with all derived checkers can
be time-consuming. T2C runs tests that cover most system
functionalities first, so a bad checker can be invalidated quickly.
It discards a checker that is already invalidated by some test
to avoid repeated invalidation. We also implement a parallel
mode that distributes the tests to run on multiple nodes, which
significantly speeds up the checker generation and validation.

5 Deployment of Checkers and Verifier
T2C deploys checkers that pass the validation together with
the target system to production. Developers can also inspect
and select a subset of validated checkers for deployment. T2C
provides a verifier to manage the checkers in production. Its
key components include an evaluator thread, a trace buffer and
a precondition index, which are optimized with circular buffer
and trie. For each checker, the evaluator uses the checker’s
manifest file to evaluate the symbolic precondition 𝐶𝑝 and the
constraints 𝐶𝑟 against production workload. If both satisfy,
the evaluator gets the concrete value for each symbol, and use
them to invoke the parameterized checker function 𝐶 𝑓 .

The precondition evaluation requires information about
the system state. This information is obtained by the in-
strumentation library described in Section 4.2.1. T2C links
this library with the target system, which performs dynamic
instrumentation to emit system trace in production. To eval-
uate the system constraints, the T2C runtime reads the re-
lated system configurations at startup time (e.g., calling
System.getProperty("readonlymode.enabled")) as part of the
checker matching process. It then disables a checker if its
required system constraint does not satisfy.

If 𝐶 𝑓 fails, T2C alerts operators about the possible failure

D

B C

A B

C

B

A

Precondition Index (Trie) Runtime Trace (Circular Buffer)

D

 C

 C

 B

A

match

match

grow

target system

E

F(x)

P(x)
check

checkers

evaluator
thread

Figure 8: T2C runtime architecture.

along with debugging information such as the failed assertion
and concrete arguments to help developers localize the bug.

T2C implements optimized runtime data structures (Fig-
ure 8) to reduce runtime storage and computation costs. The
storage overhead mainly comes from bookkeeping system
traces. T2C uses a circular buffer to manage maximum mem-
ory usage to avoid excessive GCs and automatically discard
expired traces. The circular buffer design also avoids races
between worker threads and the verifier. The computation over-
head mainly comes from matching checker preconditions with
runtime traces, which can be costly if implemented poorly
(e.g., loop through checkers) and generate backlogs. T2C
implements a precondition index with a trie to accelerate
matching. It reverses and inserts all checker preconditions
(operation list) to the trie after loading checkers at the initial-
ization stage. For example, to index three checkers, whose
preconditions are {opA, opB, opD}, {opB, opC, opD}, {opA, opB,

opC, opC, opD}, the tool constructs a trie as shown in Figure 8.
The evaluator thread continuously matches patterns with the
current trace suffix. This design effectively prunes unnecessary
searches without traversing checkers one-by-one.

Dealing with Concurrency. Multiple clients may submit
requests to the system simultaneously. As long as the pre-
conditions satisfy, concurrency only affects the frequency of
runtime checking since T2C checkers are activated based on
the associated preconditions. For example, even if a checker
is derived from a test that uses only a single client, if two
clients issue requests to the same znode, they may also trigger
the checker. Assume a checker’s precondition is s1, s2, s3.
This checkerwill still be triggered even if client1 sends requests
that produce events s1,s2 while s3 is produced by client2’s
requests. Our evaluation benchmarks (Section 7) all use mul-
tiple clients and they do not prevent checkers from getting
triggered. For concurrency in checker generation, T2C uses
mutation to address this issue as described in Section 4.2.3.

Many system runtime properties, especially related to con-
currency models, require special efforts to carefully design
corresponding runtime checkers. T2C does not aim to check
all system semantics—it automates the checker construction
process by leveraging existing test assertions, significantly
reducing developer effort. Although not every test assertion

can be safely transformed into a runtime checker, our approach
has shown that many practical semantic checks can be safely
extracted and deployed.

Checking Distributed Semantics. Some semantics involve
operations across multiple nodes, which requires aggregating
operations from different nodes. T2C follows two principles:
assertions should run on their respective nodes; if an assertion
involves workloads from multiple nodes, it should rely on
RPCs, using return values from these calls to avoid introducing
new issues. T2C provides a cluster mode to manage related re-
quests across nodes in distributed environments. It aggregates
traces from various nodes and, if a checker matches, sends
messages to trigger assertions across nodes. This is achieved
through an additional message layer, utilizing a distributed
log library to forward event traces to the appropriate nodes.

Supporting System Setup Workloads. Some workloads used
in the tests do not originate from normal client requests but
rather from internal system setup. We refer to these as system
setup workloads. We still need to capture such workloads for
the checkers. For example, HDFS developers commonly use
“MiniDFSCluster”, a testing utility class that provides APIs for
accessing internal system instances, state, configurations (e.g.,
replication factor), or queries. To support these in production,
we implement adapter classes that mimic the same interfaces
but redirect the logic to interact with the actual production
system. These adapters reside in the testing package and are
invoked via reflection at runtime.

6 Implementation

We implement T2C mainly in Java with around 8,000 SLOC.
The analysis and transformation component is implemented
with Soot [83] program analysis framework. The dynamic in-
strumentation is implemented based on Javassist [34] bytecode
editing library. The core designs of T2C, e.g., the encapsula-
tion algorithm, symbolizing arguments, are general and do not
rely on Java-specific features. We believe porting T2C to sup-
port other languages, while requiring non-trivial engineering
effort, will be relatively straightforward (e.g., using LLVM for
C/C++). T2C includes tests for its static analysis and runtime
matching algorithms, as well as scripts to automate the library
installation and test execution.

7 Evaluation

We conduct a comprehensive evaluation of our proposed
approach. Our evaluation addresses several questions: (1) can
T2C transform test cases in large distributed systems? (2) are
the generated checkers useful in detecting silent failures? (3)
do T2C checkers incur high false positives? (4) how fast is the
T2C checker construction workflow? (5) what is the runtime
overhead? The experiments are done in servers with 20-core
2.2 GHz CPUs, 64 GB memory, running Ubuntu 18.04.

7.1 Manual Effort of Using T2C
To use T2C, developers mainly need to provide informa-
tion about the code structure (e.g., paths to system and test
packages) and compilation instructions. T2C uses this to auto-
matically analyze and execute tests. Additionally, a few core
system classes must be specified for instrumentation. This
setup is minimal and a one-time effort. As a system adds new
tests, T2C can generate more checkers without extra manual
input. T2C also simplifies checker validation by automatically
filtering out incorrect checkers, so developers only need to
review noisy checkers flagged during pre-production testing.

Supporting a new system is straightforward. Our initial de-
velopment of T2C uses ZooKeeper as the target system. Since
then, T2C has evolved to be more general. Beyond the config-
uration file, developers supply a few side-effecting operations
(around six per system) and testing utility adapters (about
three classes per system). For example, integrating HBase
took one person-week, mostly for testing and debugging.

7.2 T2C Checker Generation
To evaluate the effectiveness of T2C approach on real-world
software, we apply the tool on four large systems: ZooKeeper
(ZK), Cassandra (CS), HDFS (HF), and HBase (HB). We
choose these systems because they are representative, widely
used and have many user-reported silent failures [68]. These
systems provide large test cases for T2C to analyze and gener-
ate checkers from. Each system is configured using a property
file that contains 42 lines of codes on average.

T2C generates checkers for all four systems (Table 2). Each
evaluated system has extensive tests (①) but not all tests are
suitable for checker conversions. T2C targets a subset of the
tests (②) that check system-level semantics and contain useful
assertions. The excluded tests are either unit tests for data
structures, or performance/stress tests tests with no assertions.
We use package names to identify groups of the system tests
instead of hand-picking individual tests. For example,most sys-
tem tests in Cassandra are underorg.apache.cassandra.db
and org.apache.cassandra.cql3.

T2C succeeds in constructing checker functions for the
majority of the target tests (③). It fails to convert about 7%
target tests due to analysis errors in dealing with complex
control flows for excluding side-effecting instructions. T2C
runs the successful tests to obtain the preconditions. Upon
finish generating the checkers, T2C performs sanity checks,
e.g., the checker structure must be complete, so only healthy
checkers (④) remain. T2C then validates those checkers (Sec-
tion 4.4), and retains only valid checkers (⑤). In the end, T2C
generates 672 verified checkers in total. These checkers have
4.3 assertions on average. Note that this set does not include
any tests that can reproduce failures in Table 5.

We manually inspect the generated checkers. They cover var-
ious system semantics, including request processing, storage,
replication, compaction, etc. We observe that the complete-
ness of the generated checkers depends on the coverage of the

System Version Classes Tests Checkers

① ② ③ ④ ⑤

ZK 3.4.11 123 428 109 100 90 46
CS 3.11.5 604 3283 257 242 232 100
HF 3.2.2 803 4304 816 729 707 230
HB 2.4 980 4287 990 948 904 296

Table 2: T2C checker generation overview.

f(x)

rp(x)

This work

(T2C)

Event

(Oathkeeper [OSDI’22])

State

(Dinv [ICSE’18])

In-vivo

Test

instance

Production

instance

test case

X

redirect

test case test case

a= 1, b=1,..
a= 2, b=2,..

..

Production

instance

a = b
..

generate

infer

check

test case

event1
event2

..

event2
event1

..
generate

e1 -> e2
..

Production

instance

check

infer

Production

instance

extract +

symbolize

encap-

sulate
check

Figure 9: Comparison with the state-of-the-art semantic checkers (baseline).

system tests. With developers’ continuous efforts of adding
new tests, the checkers’ completeness will further improve.

7.3 Detecting Silent Failures
T2C is designed to be a failure detection tool, which focuses on
identifying abnormal symptoms at runtime. The key metric for
a failure detection tool is once a bug is triggered in a running
system and causing a failure, whether and how quickly can
the tool detect the failure. This is different from bug-detection
tools (e.g., fuzzing), which focuses on creating the conditions,
such as inputs and thread interleaving, to trigger a bug.

Failure Benchmark To evaluate generated checker effective-
ness, we collect and reproduce 20 real-world silent failures
from four systems. These failures are collected using the
following methodology. We first query the evaluated systems’
issue trackers with keywords “silent”, “corrupt”, “inconsis-
tent”, “unexpected”, and “incorrect”. This yields 6,190 issues
(ZooKeeper: 410, Cassandra: 2054, HDFS: 1754, HBase:
1972). Then we randomly select 56 of them to inspect more
closely. We read their descriptions to confirm whether the
failures are indeed silent semantic violations. We exclude is-
sues that are crashes, aborts, out-of-memory errors, or failures
with explicit error signals (e.g., an exception). This leads to
a total of 24 cases. We attempt to reproduce each case and
succeed for 20 cases (the four remaining cases lack the neces-
sary information to reproduce). They become our evaluation
failure dataset. Table 5 shows the list of evaluated cases. All
of these failures lead to severe consequences. Each case takes
one week on average to reproduce.

Baseline Detectors We evaluate each failure and compare
T2C with three baselines (Figure 9): two state-of-the-art
research solutions—Dinv [48] and Oathkeeper [68]—and one
new semantic detector we develop.
• We design in-vivo checkers, a new checking method that

continuously executes test cases (e.g., create znodes) in the
background. We implement such checkers by modifying
the test case setup codes, and redirecting test workloads
and assertions from simulated test instances to production
server instances, so that tests can expose production issues.

• We implement state checkers based on Dinv [48], which
infers key system state relations based on traces collected
from test suite execution, e.g., 𝑙𝑜𝑐𝑘𝑆𝑒𝑡𝑡1 ∩ 𝑙𝑜𝑐𝑘𝑆𝑒𝑡𝑡2 = ∅.
Dinv only supports systems written in Go language. We add
support for Java programs.

ZooKeeper Cassandra HDFS HBase

In
-v

iv
o Tests (total) 428 3283 4304 4287

Tests (in-vivo) 391 56 1497 278
Checkers (tests∗) 94 46 73 78

St
at

e States 131 470 1,244 691
Data points 91,423 76,865 143,069 327,344

Checkers (state invs.) 47,466 11,083 23,159 35,144

Ev
en

t Inferred failures 8 10 10 9
Checkers (event invs.) 285 129 1209 1641

Table 3: Baseline checker metrics. ∗tests are sampled.

• We evaluate event checkers proposed by Oathkeeper [68],
which infers semantic rules (e.g., 𝑙𝑜𝑐𝑘 → 𝑢𝑛𝑙𝑜𝑐𝑘) from past
failures and uses the inferred rules to detect new failures.
Oathkeeper supports ZooKeeper and HDFS. We port it to
Cassandra and HBase.
We show the baseline checker metrics in Table 3. Similar to

T2C, our methodology of converting in-vivo checkers targets
tests that are applicable to intercept requests in client setup
codes to redirect. This approach aligns better with test style in
ZooKeeper and HDFS, which results in a higher applicable
percentage in these two systems. We then sample a subset
(291) of in-vivo checkers to deploy in production to shorten
the time for checking a full round. For state checkers, their
quantity is determined not by the number of test cases, but
by the number of system states the tool monitors. More test
cases yield additional traces of these states and enhance the
inference accuracy. We generate 116,852 state checkers, most
of which perform a simple arithmetic operation. For event
checkers, their number is related to the number of past failures
input into the tool. We generate a total of 3,264 event checkers.

Results Table 4 shows the detection results by different
checkers. T2C detects most failures, in total15 cases,compared
to the baseline checkers. Tests we use to generate useful
checkers were added long time ago by developers before the
failures (3.9 years on average). In comparison, event checkers
(based on Oathkeeper [68]) and state checkers (based on
Dinv [48]) only detect five and three cases, respectively. Even
the combination of all baseline checkers only detect eight
cases. In general, T2C is particularly effective in detecting
cases that require fine-grained assertions. While event and
state checkers can expose some failures, they are limited to
relatively simple relations. The in-vivo checkers are derived
directly from unit tests without generalization—they reuse
the exact concrete inputs and workloads originally used in

ZK1 ZK2 ZK3 ZK4 ZK5 ZK6 ZK7 CS1 CS2 CS3 CS4 HF1 HF2 HF3 HF4 HB1 HB2 HB3 HB4 HB5
T2C 0.112 1.018 0.460 ✖ 0.311 ✖ ✖ 0.177 0.035 0.304 0.029 0.570 2.459 ✖ 0.039 1.715 ✖ 0.188 0.041 0.021
In-vivo ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 37.05 ✖ ✖ ✖ ✖ ✖
State [47] 1.154 1.183 ✖ ✖ 0.561 ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖
Event [68] ✖ ✖ ✖ ✖ ✖ 3.433 3.569 ✖ ✖ ✖ ✖ ✖ 3.982 4.783 3.221 ✖ ✖ ✖ ✖ ✖

Table 4: Detection results on 20 real-world semantic violations. ZK: ZooKeeper; CS: Cassandra; HF: HDFS; HB: HBase.

Id. System Sys. Feature Description

ZK1 [17] ZooKeeper Ephemeral Node Wrong Results
ZK2 [15] ZooKeeper Ephemeral Node Wrong Results
ZK3 [16] ZooKeeper Read-only Mode Illegal Operation
ZK4 [18] ZooKeeper Multi Request Inconsistency
ZK5 [20] ZooKeeper Transaction Inconsistency
ZK6 [19] ZooKeeper Deletion Data Corruption
ZK7 [21] ZooKeeper Transaction Data Loss

CS1 [4] Cassandra Range Query Wrong Results
CS2 [3] Cassandra Static Row Wrong Results
CS3 [1] Cassandra Time-to-live Data Data Loss
CS4 [2] Cassandra Read Query Wrong Results

HF1 [10] HDFS Snapshot Broken Redundancy
HF2 [11] HDFS Erasure Coding Data Loss
HF3 [12] HDFS Storage Management Redundant Workloads
HF4 [13] HDFS Replication Broken Redundancy

HB1 [5] HBase Memstore Incorrect State
HB2 [7] HBase Table Update Omission
HB3 [9] HBase Table Creation Wrong Results
HB4 [8] HBase Time-to-live Data Data Corruption
HB5 [6] HBase Reversed Scan Wrong Results

Table 5: 20 real-world silent semantic failures reproduced for
evaluation. ZK: ZooKeeper; CS: Cassandra; HF: HDFS; HB: HBase.

tests, rather than generalizing to variable runtime conditions
as T2C does. As a result, in-vivo checkers only detect issues
when the production workload exactly matches the specific
scenario encoded in the original test.

T2C misses five failures. This is unsurprising since T2C
cannot guarantee detecting all silent failures. It aims to extract
semantics developers have implicitly encoded in the existing
test code and generalize the checks for detecting a class of
failures. For the missed failures, we find either the system lacks
tests that cover the violated semantics, or there is some related
test but contains no useful assertions or the test workloads
are written in a spaghetti style (usually a result of several
ad-hoc patches) that are hard to generalize. For such cases, if
developers improve the test coverage and quality, the failures
can still be likely detected. To demonstrate this, we add
a test (Figure 10) for the missing detected case HB2. T2C
successfully detects the case with the newly generated checker.

Case Studies HF1 [10]: This is a running example in this
paper. The constructed checker is shown in Figure 4. Devel-
opers observe that snapshots were modified after appending
original files (Figure 11) due to a buggy implementation under
certain configurations, which violates the immutable snapshot
semantics. T2C detects the issue by comparing the returned
snapshot size with the written size. State checkers cannot
detect this issue since there is no corrupt state (the bug is

in the read function implementation). Event checkers cannot
detect the issue since normal and buggy traces are identical.
CS1 [4]: During an upgrade ofCassandra from 2.1.17 to 3.11.4,
developers observe incomplete results from range queries due
to a bug in the mixed mode implementation, which violates
the semantics of range queries. T2C successfully detects and
alerts on the incomplete result. State checkers cannot detect
this failure since the bug lies in the query logic. Event checkers
report no violations due to event traces.
ZK1 [23]: A transient network issue causes a delete pro-
posal packet from the ZooKeeper leader to the follower to be
dropped. A logic bug then prevents ephemeral nodes from
being removed on the follower, even though the owner ses-
sion has already expired. This violates the semantics that
ephemeral nodes should exist as long as the session that cre-
ates the znode is active. T2C detects the ephemeral node still
exists after the session expiration. State checkers detects this
issue using ownership relations between ephemeral nodes and
owner sessions. Event checkers cannot detect the issue since
the deletion still happens, but the node is put back due to
buggy synchronization.
ZK-new [24]: T2C is intended as a monitoring service for
failures instead of bug finding,which is a complementary direc-
tion that focuses on crafting inputs and triggering conditions
to test a system. Our evaluation thus focuses on evaluating
T2C’s ability to detect known, real-world failures from widely-
used distributed systems. Nevertheless, during our evaluation,
T2C successfully exposes a new bug in the latest ZooKeeper
release (3.9.2). During our fault injection testing, T2C re-
ports violations. With a close inspection, we observed that
the ZooKeeper cluster was experiencing data inconsistency
among different nodes (some ephemeral nodes never expire
on certain followers). It is caused by loadDatabase loading
a snapshot with a higher transaction id than the truncated log,
causing the transaction replay to fail. T2C provided traces to
help locate the root cause. We reported this bug to developers.
This new bug is marked as “critical” (P1), which leads to data
corruption and inconsistency, a severe consequence.

7.4 False Alarms and Side Effects
We evaluate the false alarm ratios of different checkers. To
expose the corner cases that over time could occur in a real
deployment, we run the system on Jepsen [14], a widely
used testing framework for distributed systems. We imple-
ment clients in Clojure for all evaluated systems and define
common APIs. Jepsen then generates random workloads and
automatically injects network faults every 10 seconds. We cal-

https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1754
https://issues.apache.org/jira/browse/ZOOKEEPER-4026
https://issues.apache.org/jira/browse/ZOOKEEPER-4362
https://issues.apache.org/jira/browse/ZOOKEEPER-4325
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://issues.apache.org/jira/browse/CASSANDRA-15072
https://issues.apache.org/jira/browse/CASSANDRA-14873
https://issues.apache.org/jira/browse/CASSANDRA-14092
https://issues.apache.org/jira/browse/CASSANDRA-14803
https://issues.apache.org/jira/browse/HDFS-14514
https://issues.apache.org/jira/browse/HDFS-14699
https://issues.apache.org/jira/browse/HDFS-16633
https://issues.apache.org/jira/browse/HDFS-16942
https://issues.apache.org/jira/browse/HBASE-21041
https://issues.apache.org/jira/browse/HBASE-21644
https://issues.apache.org/jira/browse/HBASE-28481
https://issues.apache.org/jira/browse/HBASE-25827
https://issues.apache.org/jira/browse/HBASE-21621
https://issues.apache.org/jira/browse/HBASE-21644
https://issues.apache.org/jira/browse/HDFS-14514
https://issues.apache.org/jira/browse/CASSANDRA-15072
https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-4837

1 public void testModifyTableSize() {
2 TableName tableName = TableName.valueOf("/test");
3 TableDescriptor desc = TestUtils.setupDesc();
4 admin.createTable(desc);
5 TableDescriptor newDesc =

TableDescriptorBuilder.newBuilder(desc)
6 .setMaxFileSize(MAX_FILE_SIZE).build();
7 admin.modifyTable(newDesc);
8 assertEquals(MAX_FILE_SIZE,

admin.getDescriptor(tableName).getMaxFileSize());
9 }

Figure 10: The test added for HB2.

Hadoop File System

1 2 3

+

semantic violation:
snapshots are mutated

create file

create snap.

update

1

2

3

…

HDFS-14514

N
o

rm
a
l

B
u

g
g

y

read by 3rd

party app:

4

4 read snap.

+

Figure 11: HDFS Snapshot Violation (HF1).

culate the false alarm rate as the ratio of total alarms reported
in failure-free scenarios to the total times the checkers are
triggered in a 30-minute duration.

The results are shown in Table 6. Overall, in-vivo checkers
incur the highest false alarm rates (on average 47.4%) due to
their inflexibility in adapting to differences between test and
production environments. Meanwhile, with two filtering poli-
cies, static (exclude tests using specific APIs or configurations),
and dynamic (exclude checkers report violations in dry runs),
their false alarms can be reduced. State checkers also produce
a high ratio of false alarms, which include false rules from
test environments, such as REQUEST_PREPROCESS_SAMPLE_RATE=0.1.
Some state rules are statistically probable but lack semantic
soundness, e.g., the value of readRespCache.cacheSize is not
equal to cnxnExpiryQueue.expirationInterval, which involves
two totally unrelated variables. Event checkers and T2C have
a lower false alarm rate compared to the previous two types of
checkers, thanks to the validation mechanism. The absolute
numbers of failed T2C checks are: ZooKeeper (403), Cassan-
dra (100), HDFS (24), and HBase (258). It is unnecessary for
developers to analyze individual checking results, as most false
alarms originate from a few noisy checkers. For ZooKeeper,
nearly all false alarms come from two tests. Developers can
address these by running a profiling test before deployment or
adding a dynamic ban list.

On average, 56% of checkers generated by T2C are activated.
The checkers T2C generates usually have more expressive
and more complex preconditions, thus most of them will not
be triggered at a high frequency. Thus, T2C does not need to
incorporate probabilistic detection unlike other works such as
Dinv. The absolute numbers of T2C checking are: ZooKeeper
(31997), Cassandra (9905), HDFS (752), and HBase (41547).

In-vivo In-vivo In-vivo State Event T2C
Orig. +Sta. +Dyn.

ZooKeeper 2.6 1.7 0 14.2 3.9 1.3
Cassandra 55.3 11.5 0.5 4.7 9.6 1.0

HDFS 68.9 35.4 0.1 6.2 9.3 3.2
HBase 62.6 44.0 1.9 22.8 17.9 0.6

Table 6: False alarms (%).

False negatives require a systematic approach to trigger
silent semantic failures (which is a major research challenge)
and an oracle to tell if a silent failure has happened. Our
result in Table 4 provides some insights on what types of
failures cannot be detected by T2C (e.g., if the system does
not have a test checking the violated semantics, or the test is
of poor quality). Systems installed with T2C checkers do not
experience noticeable anomalies, e.g., file corruption, thanks
to the filtering of unsafe APIs during checker construction.

7.5 Performance and Overhead

Offline Performance We measure the performance of each
step in T2C ’s workflow. Table 7 shows the results. The
retrofitting phase usually finishes within minutes, which shows
our static analysis algorithm is efficient even for large systems.
The building and validation phase are more time-consuming
as they require executing all test cases with intense instrumen-
tation and logging.
Online Setup We next measure the runtime overhead of
different detectors. We use popular benchmarks configured
as follows: for ZooKeeper, we use an open-source benchmark
with 15 clients sending 15 K requests (40% read); for Cassan-
dra and HBase, we use YCSB with 40 clients sending 100 K
requests (50% read); for HDFS, we use built-in benchmark
NNBenchWithoutMR which creates and writes 100 files, each
file has 160 blocks and each block is 1 MB.
Online Results As shown in Table 8, state checkers incur the
highest overhead on system throughput, more than 50% on
average. Its overhead does not come from the large number of
invariants (most checker executions are arithmetic) but rather
recordings for all tracked states. In-vivo checkers incur a 2.4%
overhead, which comes from test workloads and checking
in the background. Event checkers show a 1.8% overhead
on throughput, since they only los event types and their the
instrumentation is selective. In comparison, T2C generates a
4.0% overhead on average. The main contributing factor is low
frequency of checker activation. As discussed in the previous
experiment, T2C-generated checkers typically have precise
and complex preconditions and the preconditions of many
checkers are only infrequently satisfied at runtime. As a result,
these checkers only run infrequently and this significantly
reduces the overhead. Another key factor is from the efficient
searches through our data structure optimizations.

We measure the CPU and memory usage under the baseline
and T2C. The results show a moderate CPU usage increase: ZK
(637.9% to 705.5%), CS (305.3% to 336.0%), HDFS (42.3%

https://issues.apache.org/jira/browse/HBASE-21644
https://issues.apache.org/jira/browse/HDFS-14514

Retrofit Build Validate

ZK 25 4487 3837
CS 121 6774 6054
HF 78 23551 25170
HB 149 14401 13331

Table 7: Processing time in
each step (s).

In-vivo State Event T2C

ZK 0.1 24.8 1.9 1.4
CS 3.0 59.0 1.8 9.1
HF 4.4 61.6 2.7 3.8
HB 1.9 93.3 0.7 1.5

Table 8: Throughput over-
head (%).

to 46.7%), and HBase (232.6% to 253.1%). The memory usage
increase is within 6%,withZK from 1156.3 MB to 1219.3 MB,
CS from 1209.7 MB to 1276.2 MB, HDFS from 684.8 MB to
722.7 MB, and HBase from 777.9 MB to 794.5 MB.

8 Limitations and Future Work
While T2C can generate expressive checkers from tests, our
methodology relies on certain assumptions on test quality.
T2C is less effective when the test: (1) does not target checking
system semantics, e.g., low-level data structure correctness;
(2) does not include useful assertions; (3) requires complex
preconditions which cannot be easily expressed or generalized.
Additionally, automatically generating accurate and flexible
checkers remains challenging due to limitations in existing pro-
gram analysis techniques. Our precondition mutation process
and the heuristics used for inferring the generalized relation
constraints in checkers can also introduce inaccuracies. We
plan to explore new solutions such as large language models
(LLMs) to address these limitations.

T2C minimizes the safety risks of side effects by using
static analysis to exclude dangerous system operations and
dynamic cross-validation mechanism to filter poorly general-
ized checkers. However, these measures do not fully guarantee
generated checkers side-effect free. To use runtime checkers in
real deployment, operators could employ additional safeguards
through integrating stronger isolation mechanisms (e.g., sand-
boxing) or formal verifying generated checkers—a direction
we plan to explore in future work. We also consider initially
deploying T2C in testing or pre-production environments
(e.g., staging deployment) to be a practical way of gaining
confidence before production deployment.

9 Related Work
Understanding failures in distributed systems have been a clas-
sic topic. Recent efforts pay increasing attention to complex
failure patterns [25, 28, 45, 58, 69, 74, 77, 95, 96], such as fail-
slow faults [50,70,94], metastable failures [56], and silent data
corruption [85]. Lou et al. conduct a study on characteristics
of silent semantic failures [68], which provides evidence about
the prevalence and severity of such failures. Researchers have
explored various testing [38, 44, 46, 64, 71, 87, 97] and verify-
ing [31,43,51,54,59,60,75,82,91–93] techniques in software
systems. Nevertheless, bugs can still occur in production due
to complexity, limited resources, and scalability challenges.
T2C complements existing approaches by offering a practical
and low-effort approach to expose failures that escape testing.

Several solutions have been proposed to detect non-crash

failures [62,63,76]. Panorama [57] converts components to
external observers. OmegaGen [67] generates mimic checkers
to detect faults within component internals. They rely on
error indicators (exceptions/timeouts) to detect failures. T2C
identifies silent semantic failures without explicit errors.

Many works [26,29,33,66,73,79] provide models for devel-
opers to write runtime checks. D3S [65] allows developers to
write functions that check distributed predicates as relations
between states. SQCK [49] uses a declarative query language
to check and repair a file system image. This manual approach
is time-consuming and error-prone. These checks typically fo-
cus on well-known properties. T2C does not require excessive
manual efforts. It scales to large systems and keeps the check-
ers up-to-date. The derived checkers capture loosely-defined
semantics in modern distributed systems.

A line of work [27, 30, 35, 36, 42, 52, 61, 90] automati-
cally mines likely invariants from software execution traces.
Daikon [40] and Dinv [48] infer key state relations from test
suite execution. Oathkeeper [68] infers relations between
semantic-related events from test runs on buggy and patched
code versions. These systems suffer from high inaccuracies
due to the statistical approach. The inferred invariants have
limited expressiveness to capture the diverse system semantics.
T2C provides more expressive and accurate runtime checks.

PCheck [89] extracts configuration usage codes in a pro-
gram as configuration checks. Ctests [81] connects the existing
tests with configurations from production. ZebraConf [72]
runs tests to find heterogeneous-unsafe configuration parame-
ters. Zodiac [78] mines semantic checks from online resources
for infrastructure deployment configurations. They target at
detecting misconfigurations, thus address fundamentally dif-
ferent challenges. While Ctests also transforms a test, it focuses
on configuration parameters. In contrast, T2C targets system
semantics and performs more complex transformation. T2C
also determines the checker precondition.

10 Conclusion
This paper explores an ambitious approach to automatically
construct expressive semantic checkers for large distributed
systems from existing test code. We present a study to provide
insights on the feasibility. The study guides us to design
and implement a practical framework T2C using static and
dynamic analyses. Our evaluation of T2C on large distributed
systems and real-world silent failures demonstrates its efficacy.

Acknowledgments
We thank our shepherd, Andi Quinn, and the OSDI review-
ers for their valuable feedback. This work was supported
in part by NSF grants CNS-2317698, CNS-2317751, CCF-
2318937, CNS-2441284, and a 4VA research grant. We thank
CloudLab [39] and Google for the resources and cloud cred-
its to support our experiments. Authors from Indonesia are
supported by the MoECRT ACE Open Research program.

References
[1] CASSANDRA-14092: Max ttl of 20 years will over-

flow localdeletiontime. https://issues.apache.
org/jira/browse/CASSANDRA-14092.

[2] CASSANDRA-14803: Rows that cross index block
boundaries can cause incomplete reverse reads in some
cases. https://issues.apache.org/jira/browse/
CASSANDRA-14803.

[3] CASSANDRA-14873: Fix missing rows when
reading 2.1 sstables with static columns in
3.0. https://issues.apache.org/jira/browse/
CASSANDRA-14873.

[4] CASSANDRA-15072: Range query should return full re-
sults. https://issues.apache.org/jira/browse/
CASSANDRA-15072.

[5] HBASE-21041: Memstore’s heap size will be decreased
to minus zero after flush. https://issues.apache.
org/jira/browse/HBASE-21041.

[6] HBASE-21621: Reversed scan does not return ex-
pected number of rows. https://issues.apache.
org/jira/browse/HBASE-21621.

[7] HBASE-21644: Modify table procedure runs infinitely
for a table having region replication > 1. https://
issues.apache.org/jira/browse/HBASE-21644.

[8] HBASE-25827: Per cell ttl tags get duplicated with
increments causing tags length overflow. https://
issues.apache.org/jira/browse/HBASE-25827.

[9] HBASE-28481: Prompting table already exists af-
ter failing to create table with many region replica-
tions. https://issues.apache.org/jira/browse/
HBASE-28481.

[10] HDFS-14514: Snapshots should be immutable. https:
//issues.apache.org/jira/browse/HDFS-14514.

[11] HDFS-14699: Erasure coding should guarantee enough
alive blocks. https://issues.apache.org/jira/
browse/HDFS-14699.

[12] HDFS-16633: Reserved space for replicas is not released
on some cases. https://issues.apache.org/jira/
browse/HDFS-16633.

[13] HDFS-16942: Senderror to datanode if fbr is rejecteddue
to bad lease. https://issues.apache.org/jira/
browse/HDFS-16942.

[14] Jepsen: Distributed systems safety research. https:
//jepsen.io/.

[15] ZK-1208: Ephemeral node should be removed after
session dead. https://issues.apache.org/jira/
browse/ZOOKEEPER-1208.

[16] ZK-1754: Read-only server allows to create zn-
ode. https://issues.apache.org/jira/browse/
ZOOKEEPER-1754.

[17] ZK-2355: Ephemeral node should be removed after
session dead. https://issues.apache.org/jira/
browse/ZOOKEEPER-2355.

[18] ZK-4026: Datatree.processtxn ignores ‘opcode.create2‘
in ‘opcode.multi‘. https://issues.apache.org/
jira/browse/ZOOKEEPER-4026.

[19] ZK-4325: Recursively deletion is disallowed when
trying on "/". https://issues.apache.org/jira/
browse/ZOOKEEPER-4325.

[20] ZK-4362: Zkdatabase.txncount logged non transac-
tional requests. https://issues.apache.org/jira/
browse/ZOOKEEPER-4362.

[21] ZK-4646: Committed txns may still be lost if followers
crash after replying ack-ld but before writing txns to
disk. https://issues.apache.org/jira/browse/
ZOOKEEPER-4646.

[22] ZooKeeper-1208: Ephemeral node not removed after the
client session is long gone. https://issues.apache.
org/jira/browse/ZOOKEEPER-1208.

[23] ZooKeeper-2355: Ephemeral node is never deleted
if follower fails while reading the proposal packet.
https://issues.apache.org/jira/browse/
ZOOKEEPER-2355.

[24] ZOOKEEPER-4837: Network issue causes ephemeral
node unremoved after the session expiration.

[25] Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
Fault-Tolerance, fast and slow: Exploiting failure asyn-
chrony in distributed systems. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 18), pages 390–408, Carlsbad, CA, October 2018.
USENIX Association.

[26] Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, and
Mooly Sagiv. Cloud-scale runtime verification of server-
less applications. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’21, page 92–107,New York,
NY, USA, 2021. Association for Computing Machinery.

[27] Glenn Ammons, Rastislav Bodík, and James R. Larus.
Mining specifications. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’02, page 4–16, New York,
NY, USA, 2002. Association for Computing Machinery.

https://issues.apache.org/jira/browse/CASSANDRA-14092
https://issues.apache.org/jira/browse/CASSANDRA-14092
https://issues.apache.org/jira/browse/CASSANDRA-14803
https://issues.apache.org/jira/browse/CASSANDRA-14803
https://issues.apache.org/jira/browse/CASSANDRA-14873
https://issues.apache.org/jira/browse/CASSANDRA-14873
https://issues.apache.org/jira/browse/CASSANDRA-15072
https://issues.apache.org/jira/browse/CASSANDRA-15072
https://issues.apache.org/jira/browse/HBASE-21041
https://issues.apache.org/jira/browse/HBASE-21041
https://issues.apache.org/jira/browse/HBASE-21621
https://issues.apache.org/jira/browse/HBASE-21621
https://issues.apache.org/jira/browse/HBASE-21644
https://issues.apache.org/jira/browse/HBASE-21644
https://issues.apache.org/jira/browse/HBASE-25827
https://issues.apache.org/jira/browse/HBASE-25827
https://issues.apache.org/jira/browse/HBASE-28481
https://issues.apache.org/jira/browse/HBASE-28481
https://issues.apache.org/jira/browse/HDFS-14514
https://issues.apache.org/jira/browse/HDFS-14514
https://issues.apache.org/jira/browse/HDFS-14699
https://issues.apache.org/jira/browse/HDFS-14699
https://issues.apache.org/jira/browse/HDFS-16633
https://issues.apache.org/jira/browse/HDFS-16633
https://issues.apache.org/jira/browse/HDFS-16942
https://issues.apache.org/jira/browse/HDFS-16942
https://jepsen.io/
https://jepsen.io/
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1754
https://issues.apache.org/jira/browse/ZOOKEEPER-1754
https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-4026
https://issues.apache.org/jira/browse/ZOOKEEPER-4026
https://issues.apache.org/jira/browse/ZOOKEEPER-4325
https://issues.apache.org/jira/browse/ZOOKEEPER-4325
https://issues.apache.org/jira/browse/ZOOKEEPER-4362
https://issues.apache.org/jira/browse/ZOOKEEPER-4362
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://issues.apache.org/jira/browse/ZOOKEEPER-4646
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-1208
https://issues.apache.org/jira/browse/ZOOKEEPER-2355
https://issues.apache.org/jira/browse/ZOOKEEPER-2355

[28] George Amvrosiadis and Medha Bhadkamkar. Getting
back up: Understanding how enterprise data backups
fail. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 479–492, Denver, CO, June
2016. USENIX Association.

[29] Peter C. Bates. Debugging heterogeneous distributed
systems using event-based models of behavior. ACM
Trans. Comput. Syst., 13(1):1–31, feb 1995.

[30] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and
Arvind Krishnamurthy. Inferring models of concur-
rent systems from logs of their behavior with csight.
In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, page 468–479,
New York, NY, USA, 2014. Association for Computing
Machinery.

[31] James Bornholt,Rajeev Joshi,Vytautas Astrauskas,Bren-
dan Cully,BernhardKragl,SethMarkle,Kyle Sauri,Drew
Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen,
and Andrew Warfield. Using lightweight formal methods
to validate a key-value storage node in amazon s3. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 836–850,
New York, NY, USA, 2021. Association for Computing
Machinery.

[32] Feng Chen and Grigore Roşu. Mop: An efficient and
generic runtime verification framework. In Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Appli-
cations, OOPSLA ’07, page 569–588, New York, NY,
USA, 2007. Association for Computing Machinery.

[33] Alvin Cheung and Samuel Madden. Performance profil-
ing with endoscope, an acquisitional software monitoring
framework. Proc. VLDB Endow., 1(1):42–53, aug 2008.

[34] Shigeru Chiba. Load-time structural reflection in java. In
Proceedings of the 14th European Conference on Object-
Oriented Programming, ECOOP ’00, page 313–336,
Berlin, Heidelberg, 2000. Springer-Verlag.

[35] Mihai Christodorescu, Somesh Jha, and Christopher
Kruegel. Mining specifications of malicious behavior.
In Proceedings of the the 6th Joint Meeting of the Eu-
ropean Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC-FSE ’07, page 5–14, New York, NY,
USA, 2007. Association for Computing Machinery.

[36] Christoph Csallner, Nikolai Tillmann, and Yannis
Smaragdakis. Dysy: dynamic symbolic execution for
invariant inference. In Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE ’08,
page 281–290, New York, NY, USA, 2008. Association
for Computing Machinery.

[37] Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon,
Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah,
and Sriram Sankar. Silent data corruptions at scale,
2021.

[38] David Domingo and Sudarsun Kannan. pFSCK: Ac-
celerating file system checking and repair for modern
storage. In 19th USENIX Conference on File and Stor-
age Technologies (FAST 21), pages 113–126. USENIX
Association, February 2021.

[39] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,
Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,
Kuangching Wang,Glenn Ricart,Larry Landweber,Chip
Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin
Kar, and Prabodh Mishra. The design and operation of
CloudLab. In 2019 USENIX Annual Technical Confer-
ence, USENIX ATC ’19, pages 1–14, Renton, WA, July
2019. USENIX Association.

[40] Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. In Pro-
ceedings of the 21st International Conference on Soft-
ware Engineering, ICSE ’99, pages 213–224, New York,
NY, USA, 1999. ACM.

[41] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen
McCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1–3):35–45,
December 2007.

[42] Andrea Fioraldi, Daniele Cono D’Elia, and Davide
Balzarotti. The use of likely invariants as feedback for
fuzzers. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2829–2846. USENIX Association,
August 2021.

[43] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind
Krishnamurthy. An empirical study on the correctness of
formally verified distributed systems. In Proceedings of
the Twelfth European Conference on Computer Systems,
EuroSys ’17, page 328–343, New York, NY, USA, 2017.
Association for Computing Machinery.

[44] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi,
Mohannad Ismail, Sunny Wadkar, Dongyoon Lee, and
Changwoo Min. Witcher: Systematic crash consistency
testing for non-volatile memory key-value stores. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 100–115,
New York, NY, USA, 2021. Association for Computing
Machinery.

[45] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corrup-
tions. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), pages 149–166, Santa Clara,
CA, February 2017. USENIX Association.

[46] Sishuai Gong, Dinglan Peng, Deniz Altınbüken, Pedro
Fonseca, and Petros Maniatis. Snowcat: Efficient kernel
concurrency testing using a learned coverage predictor.
In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 35–51, New York,
NY, USA, 2023. Association for Computing Machinery.

[47] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh.
Inferring and asserting distributed system invariants.
In Proceedings of the 40th International Conference
on Software Engineering, ICSE ’18, page 1149–1159,
New York, NY, USA, 2018. Association for Computing
Machinery.

[48] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh.
Inferring and asserting distributed system invariants. In
Proceedings of the 40th International Conference on
Software Engineering, pages 1149–1159, 2018.

[49] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SQCK:
A declarative file system checker. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08, page 131–146, USA,
2008. USENIX Association.

[50] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-slow at scale: Evidence of
hardware performance faults in large production systems.
In Proceedings of the 16th USENIX Conference on
File and Storage Technologies, FAST’18, pages 1–14,
Berkeley, CA, USA, 2018. USENIX Association.

[51] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage systems
are distributed systems (so verify them that Way!). In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 99–115. USENIX
Association, November 2020.

[52] Sudheendra Hangal and Monica S. Lam. Tracking down
software bugs using automatic anomaly detection. In
Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, page 291–301, New

York, NY, USA, 2002. Association for Computing Ma-
chinery.

[53] Klaus Havelund and Grigore Roşu. Runtime verifica-
tion. Computer Aided Verification (CAV ’01) satellite
workshop (ENTCS), 55, 2001.

[54] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R.
Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty,
and Brian Zill. Ironfleet: proving practical distributed
systems correct. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP ’15, page 1–17,
New York, NY, USA, 2015. Association for Computing
Machinery.

[55] Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul,
Rama Govindaraju, Parthasarathy Ranganathan, David E.
Culler, and Amin Vahdat. Cores that don’t count. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’21, page 9–16, New York, NY, USA,
2021. Association for Computing Machinery.

[56] Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 73–90, Carlsbad, CA, July
2022. USENIX Association.

[57] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing
in situ system observability for failure detection. In
13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’18, pages 1–16. USENIX
Association, October 2018.

[58] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The Achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems, HotOS XVI, British
Columbia, Canada, May 2017. ACM.

[59] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4:
formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, page 207–220, New York, NY,
USA, 2009. Association for Computing Machinery.

[60] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias
Brun, Chanhee Cho, Hayley LeBlanc, Pranav Srinivasan,
Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon
Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno.

Verus: A practical foundation for systems verification.
In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, SOSP ’24, page 438–454,
New York, NY, USA, 2024. Association for Computing
Machinery.

[61] Choonghwan Lee, Feng Chen, and Grigore Roşu. Min-
ing parametric specifications. In Proceedings of the
33rd International Conference on Software Engineering,
ICSE ’11, page 591–600, New York, NY, USA, 2011.
Association for Computing Machinery.

[62] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Improving availability in dis-
tributed systems with failure informers. In Proceedings
of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI ’13, pages 427–442,
April 2013.

[63] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the Falcon spy network. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 279–294, October
2011.

[64] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng
Ying, and Yuan Xie. Projection-based runtime assertions
for testing and debugging quantum programs. Proc. ACM
Program. Lang., 4(OOPSLA), November 2020.

[65] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xi-
aochen Lian, Jian Tang, Ming Wu, M. Frans Kaashoek,
and Zheng Zhang. D3s: Debugging deployed distributed
systems. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’08, page 423–437, USA, 2008. USENIX Associ-
ation.

[66] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang.
WiDS checker: Combating bugs in distributed systems.
In Proceedings of the 4th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’07,
Cambridge, MA, April 2007. USENIX Association.

[67] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
559–574, Santa Clara, CA, February 2020. USENIX
Association.

[68] Chang Lou, Yuzhuo Jing, and Peng Huang. Demysti-
fying and checking silent semantic violations in large
distributed systems. In 16th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’22, pages 91–107, Carlsbad, CA, July 2022.

[69] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan,
Jun Yang, and Liang You. Crashtuner: Detecting crash-
recovery bugs in cloud systems via meta-info analysis. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP ’19, page 114–130, New York,
NY, USA, 2019. Association for Computing Machinery.

[70] Ruiming Lu, Yunchi Lu, Yuxuan Jiang, Guangtao Xue,
and Peng Huang. One-size-fits-none: Understanding and
enhancing slow-fault tolerance in modern distributed
systems. In Proceedings of the 22nd USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’25, pages 359–378. USENIX Association, April
2025.

[71] Tao Lyu, Liyi Zhang, Zhiyao Feng, Yueyang Pan, Yujie
Ren, Meng Xu, Mathias Payer, and Sanidhya Kashyap.
Monarch: A fuzzing framework for distributed file sys-
tems. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 529–543, Santa Clara, CA,
July 2024. USENIX Association.

[72] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang
Wang. Finding heterogeneous-unsafe configuration pa-
rameters in cloud systems. In Proceedings of the Six-
teenth European Conference on Computer Systems, Eu-
roSys ’21, page 410–425, New York, NY, USA, 2021.
Association for Computing Machinery.

[73] Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding application errors and security flaws using pql:
a program query language. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’05, page 365–383, New York, NY, USA, 2005.
Association for Computing Machinery.

[74] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srini-
vasan Seshan. Subtleties in tolerating correlated failures
in wide-area storage systems. In Proceedings of the
3rd Conference on Networked Systems Design & Imple-
mentation - Volume 3, NSDI’06, page 17, USA, 2006.
USENIX Association.

[75] Aurojit Panda, Mooly Sagiv, and Scott Shenker. Veri-
fication in the age of microservices. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
HotOS ’17, page 30–36, New York, NY, USA, 2017.
Association for Computing Machinery.

[76] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan
Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:
A fail-slow detection and mitigation framework for dis-
tributed storage services. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 47–62,
Renton, WA, July 2019. USENIX Association.

[77] Shangshu Qian, Wen Fan, Lin Tan, and Yongle Zhang.
Vicious cycles in distributed software systems. In 2023
38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 91–103. IEEE, 2023.

[78] Yiming Qiu, Patrick Tser Jern Kon, Ryan Beckett, and
Ang Chen. Unearthing semantic checks for cloud
infrastructure-as-code programs. In Proceedings of
the ACM SIGOPS 30th Symposium on Operating Sys-
tems Principles, SOSP ’24, page 574–589, New York,
NY, USA, 2024. Association for Computing Machinery.

[79] Andrew Quinn, Jason Flinn, Michael Cafarella, and Baris
Kasikci. Debugging the OmniTable way. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 357–373, Carlsbad,
CA, July 2022. USENIX Association.

[80] Alexandru Sălcianu and Martin Rinard. Purity and side
effect analysis for Java programs. In Radhia Cousot,
editor, Verification, Model Checking, and Abstract In-
terpretation, pages 199–215, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[81] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine
Ang, Owolabi Legunsen, and Tianyin Xu. Testing config-
uration changes in context to prevent production failures.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’20, pages 735–751.
USENIX Association, November 2020.

[82] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma,
Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon,
Lalith Suresh, Adriana Szekeres, and Tianyin Xu. Anvil:
Verifying liveness of cluster management controllers. In
18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 649–666, Santa
Clara, CA, July 2024. USENIX Association.

[83] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced
Studies on Collaborative Research, CASCON ’99, pages
13–, Mississauga, Ontario, Canada, 1999. IBM Press.

[84] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang,
Jiesheng Wu, and Qingchao Luo. Understanding silent
data corruptions in a large production cpu population.
In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 216–230, New York,
NY, USA, 2023. Association for Computing Machinery.

[85] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang,
Jiesheng Wu, and Qingchao Luo. Understanding silent
data corruptions in a large production cpu population.
In Proceedings of the 29th Symposium on Operating

Systems Principles, SOSP ’23, page 216–230, New York,
NY, USA, 2023. Association for Computing Machinery.

[86] Mark Weiser. Program slicing. In Proceedings of the
5th International Conference on Software Engineering,
ICSE ’81, page 439–449. IEEE Press, 1981.

[87] Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen,
Yuqun Zhang, and Lingming Zhang. Jitfuzz: Coverage-
guided fuzzing for jvm just-in-time compilers. In Pro-
ceedings of the 45th International Conference on Soft-
ware Engineering, ICSE ’23, page 56–68. IEEE Press,
2023.

[88] Haiying Xu, Christopher J. F. Pickett, and Clark Ver-
brugge. Dynamic purity analysis for Java programs.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, PASTE ’07, page 75–82, New York, NY,
USA, 2007. Association for Computing Machinery.

[89] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou,
Shan Lu, Long Jin, and Shankar Pasupathy. Early de-
tection of configuration errors to reduce failure damage.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’16, pages 619–634,
Savannah, GA, November 2016. USENIX Association.

[90] Wei Xu, Ling Huang, Armando Fox, David Patterson,
and Michael I. Jordan. Detecting large-scale system
problems by mining console logs. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, page 117–132, New York, NY,
USA, 2009. Association for Computing Machinery.

[91] Xieyang Xu, Yifei Yuan, Zachary Kincaid, Arvind Kr-
ishnamurthy, Ratul Mahajan, David Walker, and Ennan
Zhai. Relational network verification. In Proceedings
of the ACM SIGCOMM 2024 Conference, ACM SIG-
COMM ’24, page 213–227, New York, NY, USA, 2024.
Association for Computing Machinery.

[92] Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAI: Fast, automated inference of inductive invariants
for verifying distributed protocols. In Marcos K. Aguil-
era and Hakim Weatherspoon, editors, 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 485–501. USENIX Association, 2022.

[93] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAI: Data-driven
automated invariant learning for distributed protocols.
In Angela Demke Brown and Jay R. Lorch, editors, 15th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021, pages
405–421. USENIX Association, 2021.

[94] Andrew Yoo, Yuanli Wang, Ritesh Sinha, Shuai Mu, and
Tianyin Xu. Fail-slow fault tolerance needs programming
support. In Proceedings of the Workshop on Hot Topics in
Operating Systems,HotOS ’21, page 228–235,New York,
NY, USA, 2021. Association for Computing Machinery.

[95] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before you change: Preventing correlated failures
in service updates. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 575–589, Santa Clara, CA, February 2020.
USENIX Association.

[96] Yongle Zhang, Junwen Yang,Zhuqi Jin,Utsav Sethi,Kirk
Rodrigues, Shan Lu, and Ding Yuan. Understanding
and detecting software upgrade failures in distributed
systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 116–131, New York, NY, USA, 2021. Association
for Computing Machinery.

[97] Li Zhong, Chengcheng Xiang, Haochen Huang, Bingyu
Shen, Eric Mugnier, and Yuanyuan Zhou. Effective bug
detection with unused definitions. In Proceedings of the
Nineteenth European Conference on Computer Systems,
EuroSys ’24, page 720–735, New York, NY, USA, 2024.
Association for Computing Machinery.

	Introduction
	Background and Motivation
	Example
	Feasibility Study
	Implications

	Overview of T2C
	Checker Generation and Validation
	Encapsulate Checker Function
	Identify Checker Precondition
	Obtain Concrete Precondition
	Symbolize Concrete Precondition
	Mutate Precondition

	Additional Handling
	Validate Checkers

	Deployment of Checkers and Verifier
	Implementation
	Evaluation
	Manual Effort of Using T2C
	T2C Checker Generation
	Detecting Silent Failures
	False Alarms and Side Effects
	Performance and Overhead

	Limitations and Future Work
	Related Work
	Conclusion

