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Graph Store

System Overview

Wukong+G: 1. GPU-based RDF Query Execution
2. GPU-friendly RDF Graph Store
3. GPU & RDMA-accelerated Query Distribution

Social Networks, Internet of Things and Business 
Intelligence applications model data as  RDF 
Graphs and query with SPARQL query language.

Summary

Case Study

Motivation Model & Solutions
Computation Model

Query Execution

Benchmark Settings
□ Single query latencies
□ Mixed concurrent latency CDF

Settings
Performance (msec) on LUBM-10240

Background
We use Lehigh University Benchmark 
(LUBM) which includes both selective 
queries and non-selective queries. We 
compare our system with the state-of –
art systems Wukong and TriAD.

Results
TriAD L1 L2 L3 L4 L5 L6 L7

1 node 864 210 421 2.25 1.23 16.2 2,149

5 nodes 3,400 880 2,835 3.08 1.84 65.2 10,806

Wukong L1 L2 L3 L4 L5 L6 L7

1 node 1,127 166 442 0.15 0.09 0.46 1,012

5 nodes 950 141 353 0.36 0.16 0.57 886

WukongG L1 L2 L3 L4 L5 L6 L7

1 node 203 33 69 0.13 0.10 0.45 131

5 nodes 278 25 52 0.48 0.17 0.61 128

Hardware Settings
□ 5-node cluster, 12 cores each
□ 56Gbps InfiniBand NIC
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Challenges:
□ Small GPU memory for large graphs
□ Limited PCIe bandwidth for data 

movement
□ Cross-node GPU communication for 

query distribution
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Non-selective queries:
Infrequent but heavy
e.g. Who take their advisors’ 
courses?

Wukong+G

Note that datasets on 5 nodes is 4x 
larger than one node test.

Distributed Processing

□ all graph scale: potential GPU memory overflow
□ per-query scale : only cache the necessary data retained in GPU 

memory before running a query. 
□ per-pattern scale : only prefetches the triples with a certain 

predicate used by the next triple pattern.
□ Pipeline: overlap the data movement and query execution time
□ per-piece scale : further split predicates into multiple fixed-size 

blocks and cached them in a best-effort way.

□ Predicate-based grouping: partition the key space into 
multiple segments, which are identified by the combination of 
predicate and direction (e.g, ⟨pid,d⟩).
□ Caching RDF store: splits each segment into multiple fixed-size 

blocks and allows to store them into discontinuous regions of 
the cache on GPU.
□ Replacement policy: uses a look-ahead LRU-based policy to 

decide where to store the new prefetched value and key 
blocks.

Basic approach:
Leverage GPUs to exploit 
data parallelism in non-
selective queries 

□ Parallel sub-query generation: 
leverages GPU to fast break 
history tables 
□ Direct sub-query distribution:

adopts GPUDirect RDMA to 
avoid unnecessary data copy

*This work was done while the author was in SJTU.

Problem: inefficient query processing on massive data 
parallelism and lack of execution isolation leads to 1) 
sub-optimal response time and 2) workload 
interference

Selective queries:
Light but frequent 
e.g. Who is Logan’s advisor?

Heterogeneity:   selective and non-selective queries
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How to classify queries?
Graph traversal pattern

How we improve memory and time efficiency step by step:


