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Networks, Infernet of Things and Business
igence applications model data as R
Graphs and query with SPARQL query language.
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Selective queries:

selective and non-selective queries

Light but frequent
e.g. Who is Logan’s advisore
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Basic approach:
Leverage GPUs to exploit
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X . Non-selective queries:
Infrequent but heavy

e.g. Who fake their advisors’

Co G2
Logan °
X

Problem: inefficient query processing on massive dafa
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predi/cate—based decomposition value-block
0 Predicate-based grouping: partition the key space into
multiple segments, which are identitfied by the combination of
predicate and direction (e.g, (pid,d)).
0 Caching RDF store: splits each segment info multiple fixed-size
blocks and allows to store them into discontinuous regions of
the cache on GPU.
0 Replacement policy: uses a look-ahead LRU-based policy to
decide where 1o store the new prefetched value and key
blocks.
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Parallel sub-query generation:
everages GPU fo fast break
nistory tables

Direct sub-query distribution:
adopts GPUDirect RDMA to
avoid unnecessary data copy
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How we improve memory and time efficiency step by step:

0 all graph scale: potential GPU memory overflow

0 per-query scale : only cache the necessary data retained in GPU
memory before running a query.

0 per-pattern scale : only prefetches the triples with a certain
predicate used by the next triple pattern.

0 Pipeline: overlap the data movement and query execution time

0 per-plece scale : further split predicates info multiple fixed-size
blocks and cached them in a best-effort way.

Case Study

Background

Settings
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Hardware Settings
0 5-node cluster, 12 cores each

0 56Gbps InfiniBand NIC

Benchmark Settings
0 Single query latencies
0 Mixed concurrent latency CDF

Note that datasets on 5 nodes is 4x
larger than one node fest.

We use Lehigh University Benchmark ol
(LUBM) which includes both selec’rlve ol g
gueries and non-selective queries. We L4
compare our system with the state-of —
art systems Wukong and TriAD.
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Results

Performance (msec) on LUBM-10240

TriAD L1 L2 L3 L4 L5 L6 L7

1 node 864 210 421 2.25 1.23 16.2 2,149
5 nodes 3,400 880 2,835 3.08 1.84 65.2 10,806
Wukong L1 L2 L3 L4 L5 L6 L7

1 node 1,127 166 442 0.15 0.09 0.46 1,012
5 nodes 950 141 353 0.36 0.16 0.57 886
WukongG | L1 L2 L3 L4 L5 L6 L7

1 node 203 33 69 0.13 0.10 0.45 131

5 nodes 278 25 52 0.48 0.17 0.61 128
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*Thls work was done while the author was in SJTU.




