
Chang Lou*†, Siyuan Wang†, Rong Chen† and Haibo Chen†

Fast and Concurrent Distributed RDF Queries
using RDMA-assisted GPU Graph Exploration

IPADS@Shanghai Jiao Tong Univ.† and Johns Hopkins Univ.* http://ipads.se.sjtu.edu.cn/projects/wukong

Graph Store

System Overview

Wukong+G: 1. GPU-based RDF Query Execution
2. GPU-friendly RDF Graph Store
3. GPU & RDMA-accelerated Query Distribution

Social Networks, Internet of Things and Business
Intelligence applications model data as RDF
Graphs and query with SPARQL query language.

Summary

Case Study

Motivation Model & Solutions
Computation Model

Query Execution

Benchmark Settings
□ Single query latencies
□ Mixed concurrent latency CDF

Settings
Performance (msec) on LUBM-10240

Background
We use Lehigh University Benchmark
(LUBM) which includes both selective
queries and non-selective queries. We
compare our system with the state-of –
art systems Wukong and TriAD.

Results
TriAD L1 L2 L3 L4 L5 L6 L7

1 node 864 210 421 2.25 1.23 16.2 2,149

5 nodes 3,400 880 2,835 3.08 1.84 65.2 10,806

Wukong L1 L2 L3 L4 L5 L6 L7

1 node 1,127 166 442 0.15 0.09 0.46 1,012

5 nodes 950 141 353 0.36 0.16 0.57 886

WukongG L1 L2 L3 L4 L5 L6 L7

1 node 203 33 69 0.13 0.10 0.45 131

5 nodes 278 25 52 0.48 0.17 0.61 128

Hardware Settings
□ 5-node cluster, 12 cores each
□ 56Gbps InfiniBand NIC

1

3
6

4 5

2

2
3

3

2

1

Logan

Erik

to

to

out

out

DS

OS

pidx to in Logan Erik

OS

DS

tc in

tc in

Bobby

Kurt

Bobby ad out

Logan
Marie ad out

Logan

Logan
Erik

to
to

out
out

DSOS

P-idx to in Logan Erik
DS

OS

tc in

tc in

Kurt Bobby

Bobby ad out

LoganMarie ad out
Logan

QSTP-0: to|in ?X
TP-1: ?X to|out ?Y
TP-2: ?Y tc|in ?Z
TP-3: ?Z ad|out ?X

P-idx to in
Logan
Erik

to
to

out
out

DS

OS

tc in

tc in

Logan Erik
DSOS Kurt

Bobby

QS

prefetch data from CPU DRAM to GPU DRAM
Process QS on GPU

to out tc in ad out* * *

TP-0: to|in ?X
TP-1: ?X to|out ?Y
TP-2: ?Y tc|in ?Z
TP-3: ?Z ad|out ?X

* * *

TP-0 TP-1 TP-2 TP-3

Time
Per-query

Per-pattern

Pipeline

Per-piece

Time

Out-of-memory
RDF data

Time

Time

Time
predicate

direction

overlap with the planning of this query
or the processing of previous query

Wukong

TP-0
TP-1
TP-2
...
TP-2

1

23

4 5 6

7?X ?Y?Z

Challenges:
□ Small GPU memory for large graphs
□ Limited PCIe bandwidth for data

movement
□ Cross-node GPU communication for

query distribution

1

20

40

60

80

100

 0.1 1 10 100 1000 10000

C
D

F
(%

)

Latency (msec)

A1
A2
A3
L4
L5
L6
L7

1

20

40

60

80

100

 0.1 1 10 100 1000 10000

C
D

F
(%

)

Latency (msec)

A1
A2
A3
L4
L5
L6
L7

Non-selective queries:
Infrequent but heavy
e.g. Who take their advisors’
courses?

Wukong+G

Note that datasets on 5 nodes is 4x
larger than one node test.

Distributed Processing

□ all graph scale: potential GPU memory overflow
□ per-query scale : only cache the necessary data retained in GPU

memory before running a query.
□ per-pattern scale : only prefetches the triples with a certain

predicate used by the next triple pattern.
□ Pipeline: overlap the data movement and query execution time
□ per-piece scale : further split predicates into multiple fixed-size

blocks and cached them in a best-effort way.

□ Predicate-based grouping: partition the key space into
multiple segments, which are identified by the combination of
predicate and direction (e.g, ⟨pid,d⟩).
□ Caching RDF store: splits each segment into multiple fixed-size

blocks and allows to store them into discontinuous regions of
the cache on GPU.
□ Replacement policy: uses a look-ahead LRU-based policy to

decide where to store the new prefetched value and key
blocks.

Basic approach:
Leverage GPUs to exploit
data parallelism in non-
selective queries

□ Parallel sub-query generation:
leverages GPU to fast break
history tables
□ Direct sub-query distribution:

adopts GPUDirect RDMA to
avoid unnecessary data copy

*This work was done while the author was in SJTU.

Problem: inefficient query processing on massive data
parallelism and lack of execution isolation leads to 1)
sub-optimal response time and 2) workload
interference

Selective queries:
Light but frequent
e.g. Who is Logan’s advisor?

Heterogeneity: selective and non-selective queries

tc

to

to

tc
ad

ad

C

S

Pty

OS
Logan

DS

Erik to

tc

ad
Bobby MarieKurt

ty

ty
ty

ty

ty
ty

SELECT ?X ?Y ?Z WHERE {
 ?X teacherOf ?Y .
 ?Z takesCourse ?Y .
 ?Z advisor ?X .
} SPARQL N

ad
tc

?X
?Y

to

?Z

Graph N

SELECT ?X WHERE {
 ?X advisor Logan .
} SPARQL S

tc:takesCourse
to:teacherOf
ad:advisor
ty:type

Logan

?X

Graph S

P:professor
S:student
C:course

How to classify queries?
Graph traversal pattern

How we improve memory and time efficiency step by step:

