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Abstract
Distributed systems today offer rich features with numerous
semantics that users depend on. Bugs can cause a system
to silently violate its semantics without apparent anomalies.
Such silent violations cause prolonged damage and are diffi-
cult to address. Yet, this problem is under-investigated.

In this paper, we first study 109 real-world silent semantic
failures from nine widely-used distributed systems to shed
some light on this difficult problem. Our study reveals more
than a dozen informative findings. For example, it shows that
surprisingly the majority of the studied failures were violating
semantics that existed since the system’s first stable release.

Guided by insights from our study, we design Oathkeeper, a
tool that automatically infers semantic rules from past failures
and enforces the rules at runtime to detect new failures. Eval-
uation shows that the inferred rules detect newer violations,
and Oathkeeper only incurs 1.27% overhead.

1 Introduction

Users’ increasing reliance on distributed systems highlights
the importance of ensuring they work correctly. Unfortunately,
real-world distributed systems inevitably encounter failures.
When a failure is recognizable through explicit signals such
as crash, timeout, error code, or exception, timely actions can
still be taken to detect [22,40,46] and mitigate [41,52,53] the
failure. A vexing problem occurs when a system is operational
but silently breaks its semantics without apparent anomalies.

Take a distributed notification service as an example, which
provides an interface that promises to invoke the client call-
back whenever the status of some object changes. A bug may
cause this system to miss invoking the callback upon a change
or invoke the callback more than necessary. As another exam-
ple, a distributed file system that is supposed to replicate data
blocks by user-configured n copies may incorrectly under-
replicate some blocks without any explicit errors.

Such failures can lead to severe consequences because they
violate the guarantees a system provides to its users. They
also break the contracts that other components or applications
rely on, and result in amplified incorrectness. Moreover, since
the violation is silent, the damage exacerbates over time. For
example, as the buggy distributed file system that silently
violates its replication policy continues to run, more and more
newly created files will be subject to potential data loss.

System Ver. Client Public Admin Config.API Method Command

ZooKeeper 3.4.6 38 219 13 30
ZooKeeper 3.6.2 78 2,853 18 128
HDFS 2.7.2 128 5,293 11 224
HDFS 2.10.0 162 6,306 12 449
Kafka 2.6.0 166 2,661 76 366
Kafka 2.8.0 171 3,107 86 379

Table 1: Number of public interfaces in popular distributed systems.
An interface can have multiple semantics under different settings.

Distributed systems today have rich semantics (Table 1)
exposed through client APIs, public methods including RPCs
among internal components, administrator commands, config-
uration parameters, etc. One interface often encodes multiple
guarantees. New interfaces and semantics are also continu-
ously introduced as a system evolves. These characteristics
together make it challenging to ensure that a distributed sys-
tem conforms to its semantics in production settings.

Indeed, real-world evidence shows that semantic violations
occur in practice. In a Google cloud incident [3], a traffic
engineering subsystem that is supposed to throttle traffic upon
congestion incorrectly throttled traffic even though the net-
work was not congested. Another highly-impactful global
outage [2] was caused by a quota system incorrectly reporting
the usage for a user ID service as zero.

However, other than anecdotal evidence, the problem of
silent semantic violations in distributed systems remains mys-
terious, despite its severe consequences. For instance, mature
distributed systems include extensive test cases to check the
correctness of their features. Thus, it is natural to assume
silent semantic violations are rare in production because test-
ing likely has eliminated most of them. In addition, while
adding assertions and runtime verification [43, 44, 48, 57] are
potential solutions, the conventional wisdom is that they are
expensive and semantic rules are difficult to get. It is also
unclear what kind of semantics are violated in practice.

To systematically understand this problem, we present, to
our best knowledge, the first empirical study on 109 real-
world silent semantic violations from nine widely-used dis-
tributed systems. Through these cases, we analyze key ques-
tions such as how prevalent are semantic violations in prac-
tice, what semantics are violated, why are these failures not
caught in testing, and how are these silent violations detected.

Our study provides quantitative data points to answer these
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questions. The study findings also challenge some conven-
tional wisdom and reveal gaps in the current practice. We
highlight several findings:
• Contrary to the belief that silent semantic violations rarely

occur in deployed systems, they have significant presence
(39%) among sampled failures of all kinds.

• While the studied systems get more extensively tested over
time and continue to add new features and semantics, their
initial semantics do not become more bulletproof. On the
contrary, more than two thirds of the failures violate seman-
tics that have existed since the system’s first stable release.

• Although these are distributed system failures, most (74%)
violations can be determined locally in some component.

• The violated semantics are often not untested but rather
well covered by existing test cases.

• Enabling assertions in release builds helps by converting
semantic violations into crash failures. One studied system
does this and has the lowest ratio of semantic failures.

• In many cases, although a semantic was initially honored, it
was later violated, thus one-time assertions are insufficient.

• Many system semantics are vulnerable to violations during
maintenance operations or node events.
Given the prevalence (as our study indicates) and severity

of silent semantic violations, we design a tool Oathkeeper to
help users check silent semantic violations at runtime. The
tool design is directly guided by insights from our study.

Specifically, we find that in 73% of the cases, developers
add regression tests after the failure is reported, which contain
valuable information about the failed semantic. However, the
majority of the studied cases still violate semantics that have
been tested before. A major reason for the gap is that these
regression tests are usually patch-driven: they only check if
the specific bug is fixed in a particular setup using a bug-
triggering workload. The underlying semantics can continue
to be broken with different root causes in different scenarios.

Based on this insight, Oathkeeper leverages the regression
tests and tries to infer the underlying semantic rules implied
by the tests. To do so, Oathkeeper runs the tests on both the
buggy version and patched version of the system, and takes
a template-driven approach to automatically infer semantic
rules from the two traces. Oathkeeper then deploys these
semantic rules to production to catch future violations that
are caused by different bugs under different conditions.

We evaluate Oathkeeper on ZooKeeper, HDFS, and Kafka.
Oathkeeper infers hundreds to thousands of semantic rules
from the old regression tests in these systems. With the in-
ferred rules, we evaluate Oathkeeper on seven real-world se-
mantic failures that were introduced long (9–34 months) after
the old failures. Oathkeeper detects violations for six of them.
With all rules enabled, Oathkeeper on average only incurs
1.27% throughput overhead to the target systems.

The contributions of this paper are two-fold: (i) the first
study on real-world silent semantic violations in nine popular
distributed systems; (ii) the design of Oathkeeper, which au-

tomatically infers semantic rules for large distributed systems
to check silent semantic violations at runtime.

The source code of Oathkeeper is publicly available at:
https://github.com/OrderLab/OathKeeper

2 Background
2.1 Definition
We consider a distributed system S that provides services
through a collection of operations. Each operation o has cer-
tain semantics [29]. The semantics encode guarantees that o
makes about the output, system states, and results of subse-
quent operations, in response to some triggering condition c.
The condition c can be a client request, an admin command
(at the server side), a message from internal components, as
well as an environment change including the passage of time.
The semantics of S are all the guarantees provided by the
history of operations S executes in response to a list of c.

A semantic violation (failure) occurs when S breaks some
of its semantics in an execution. The failures may exhibit ex-
plicit error signals, such as crashes, timeouts, and exceptions.
In such cases, the violations overlap largely with existing fail-
ure models and can be well addressed by existing techniques.

This work focuses on silent semantic violations, in which S
violates its semantics but remains operational without exhibit-
ing explicit error signals (S is unaware of its misbehavior). We
focus on this class of failures because they are under-studied
yet incur damaging consequences, and they pose significant
challenges to testing, failure detection, and recovery.

Silent semantic violations differ from other failure modes
in observability. Fail-stop failures cause complete loss of func-
tionality, which can be observed with simple measures such as
monitoring heartbeats. Fail-slow [32], partial failures [46] and
gray failures [37] only cause some functionality to be broken
(slow). But these issues can still be observed with generic
approaches, e.g., checking exceptions or timeouts [45]. In
comparison, silent semantic violations are difficult to observe
without a deep understanding of S’ semantics and execution.

Another way to interpret the “silent” aspect is on the se-
mantics being violated. If S only has a few operations, all of
which have well-defined and thoroughly checked semantics,
semantic violations in S will be observable failures. Unfortu-
nately, distributed systems have a large number of interfaces
(Table 1), many of which have loosely-defined (or hidden)
semantics that cannot be easily checked. Consequently, viola-
tions of such semantics are difficult to detect and address.

2.2 An Example
We show an example of silent semantic failures from our study
(Section 3). ZooKeeper is a coordination service with a hier-
archical data model. Its clients store data by creating znode

in a namespace. A special type of znode is called ephemeral
node. The semantics of the ephemeral node create() opera-
tion guarantees that the znode exists for as long as the creating
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Figure 1: A silent semantic failure in ZooKeeper.

client’s session and will be deleted once the associated session
ends. The triggering conditions are the create request and the
client session disconnection. Ephemeral nodes are commonly
used to store membership information. For example, HDFS
implements its leader election using ephemeral nodes [27].

In a production ZooKeeper failure [13], some ephemeral
node still existed even though the client session that created
them was long gone. Specifically, a Kafka consumer crashed
but the associated znode was not deleted (Figure 1). As a re-
sult, when Kafka clients queried ZooKeeper to discover con-
sumer information, they kept trying to connect to the crashed
consumer. In other settings, this semantic violation can propa-
gate to other dependent applications, e.g., it will break HDFS
namenode’s automatic fail-over feature, which depends on the
ephemeral node semantics, causing an HDFS service outage.

3 Study Methodology
Compared to other failure modes in distributed systems, silent
semantic violations are not well understood. To fill this gap,
we conduct a study on user-reported silent semantic failures
from nine large-scale distributed systems (Table 2). We select
these systems because they are representative, mature, widely
used in production, and record many user-reported failures.

To collect the failure cases, we first query the study systems’
issue trackers to find tickets that (1) are marked as “bugs”,
(2) have priorities higher than “minor”, (3) are resolved, (4)
involve the server components. This step returns a large num-
ber of tickets. We then randomly sample a subset (Table 2).
Among this subset, some are not real failures, such as issues
found in internal testing. The remaining ones (valid column in
Table 2) are potential production failures. We then read their
descriptions and check whether the failures violate system
semantics. We filter crashes, aborts, out-of-memory errors,
and semantic failures with clear error signals.

After the above step, we get a candidate set of production
silent semantic failures (Candidate column). Due to time
constraints, we perform in-depth analyses on a subset of the
candidate cases, preferring those with sufficient information
and discussions. This gives us the final study dataset (Studied
column) of 109 production semantic failure cases.

Note that our sample sizes vary across systems. This is
because the studied systems’ tickets vary greatly in terms
of their information, quality, and bug types. If using a fixed
sample size or ratio, one system can dominate the study and
produce extremely biased findings. Our sampling instead is
done iteratively: for a particular system, if after an initial

System Category Lang. All Sampled Candi Stud
(valid) -date -ied

Cassandra (CS) Database Java 3,308 69 (54) 25 12
CephFS (CF) File Sys. C++ 673 673 (123) 37 12
ElasticSearch (ES) Search Java 4,101 101 (46) 26 10
HBase (HB) Database Java 6,143 233 (80) 32 14
HDFS (HF) File Sys. Java 3,409 99 (52) 22 14
Kafka (KF) Streaming Scala 2,764 142 (92) 39 13
Mesos (ME) Cluster Mgr. C++ 2,462 116 (47) 21 12
MongoDB (MG) Database C++ 14,776 355 (151) 30 10
ZooKeeper (ZK) Coordination Java 1,141 134 (102) 36 12

Total 38,786 1,922 (747) 268 109

Table 2: Studied systems, the tickets (of various kinds) in the issue
tracker of each system, the cases we sampled, and cases studied.

sampling, its number of Candidate cases is too small or 0,
we sample more, until the candidate numbers for different
systems are relatively balanced. Note that each iteration in
this process is still randomly choosing from the All tickets.

Threats to Validity. Like all empirical studies, our study is
subject to validity problems such as the representativeness
and biases. We cover popular distributed systems of different
types, such as database, file system, and search engine, to
improve the representativeness. To minimize selection bias,
we randomly sample the cases. We also spread the sampling
across times so we are not biased by some specific version.
To reduce the manual inspection errors, we write a detailed
analysis document for each case and have multiple inspectors
examine each document to reach a consensus.

Although our study provides informative findings on se-
mantic failures in the studied systems, they may not be gen-
eralized to other systems beyond the scope this study was
conducted. Our study is also biased by programming lan-
guages (Java and C++); the findings may not generalize to
systems written in other languages such as Erlang or Elixir,
which embrace “let-it-crash” error handling philosophy [18].

4 Are Silent Semantic Failures Rare?
Prevalence. An important question about silent semantic vi-
olations is whether they occur rarely in production. Getting
accurate prevalence data requires examining thousands of
tickets for each system, which is a daunting task. We instead
obtain an approximate result by calculating the percentage
of silent semantic failures in our sample set. Specifically, we
calculate the percentages of the number of candidate cases in
Table 2 over the number of valid cases in the sample. Note that
the candidate cases are examined to be indeed silent semantic
failures, even though we only study a subset of them.
Finding 1: Silent semantic failures have significant presence
across all studied systems, occupying 20%–57% (39% on
average) of the sampled cases for all types of failures.

The percentages vary in different systems. Systems such
as ElasticSearch and Cassandra have a higher percentage of
semantic failures (57% and 46%, respectively). MongoDB
has the lowest ratio (20%). We will discuss in Section 8 these
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systems’ practices that may contribute to the differences.
Severity. How severe are these reported silent semantic fail-
ures? To answer this question, we analyze the severity levels
that developers assign to the issues. Some systems use slightly
different categories. We normalize them into three levels:
Blocker, Critical, Major. Based on the official descriptions,
Blocker means the issue “should block release until it is re-
solved”; Critical means the issue causes severe consequences
like data loss; Major means a “major loss of function”.

Overall, 45% of the studied cases have Blocker or Critical
priorities. The ZooKeeper failure [13] described in Section 2.2
is an example Blocker issue. As another example Blocker
issue, users reported that in their HDFS deployment, all the
replicas of some blocks are residing on the same rack [8],
which breaks the redundancy policy. This is clearly a severe
violation because replica placement is critical to HDFS data.

We also compare the priority distribution of semantic fail-
ures with all failures in the sample. The result is shown in
Figure 2. The average percentage of Blocker priority in seman-
tic failures increases from 15% to 21%, and the percentage of
Critical priority increases from 8% to 24%.

Interestingly, we find in some cases initially developers may
not consider the symptoms to be severe, but after further inves-
tigation developers upgrade the priority level, e.g., “Marking
as critical for 2.0. These ‘unexpected behaviors’ cause opera-
tor head-scratching and wasted hours of digging” [5].
Finding 2: Despite the lack of explicit error symptoms, silent
semantic failures are considered severe by developers and
users. Moreover, the sampled semantic failures are assigned
with higher priorities compared to all sampled failures.

Consequence. We next analyze the failure consequences. Fig-
ure 3 shows that besides incorrectness, semantic failures cause
serious consequences such as corruption and data loss.

The consequences are damaging because clients or users
are misled by the system’s seemingly normal reactions. For
example, Kafka guarantees that when a success response is
sent to a producer, the produced message will be persisted
by at least min.isr replicas. Otherwise, the producer will
be notified of an error, so it may retry the request. In one
failure [9], a leader replica switched to follower then back to
leader. Some messages produced were lost while the client
received responses with no error. This false success resulted
in data loss for the users.

Note that Figure 3 is about the reported impact of failures,
which is not always the semantic violation per se. For example,
in a MongoDB case, the maximum cache usage configuration
is not enforced. It takes a while for the violation to cause
a performance problem—which is the consequence of this
failure. But even before the system reaches the performance
collapse, a cache limit violation has occurred.
Finding 3: In addition to incorrectness (wrong responses),
silent semantic violations often cause severe consequences
including corrupt state, data or state loss, and security issues.

5 What Kind of Semantics Is Violated?
5.1 Sources of Violated Semantics
The studied failures violate various system-specific semantics.
We analyze where these semantics come from. There are four
sources and Figure 4 shows their distributions:
• API spec: a system API promises certain effect will (not)

occur, e.g., a successful return of removeWatch API is sup-
posed to remove the specified watcher.

• Internal behavior: the system’s documentation explicitly
guarantees that something should (not) occur about its in-
ternal behavior, which is not directly exposed to external
APIs, e.g., HDFS guarantees that if some Erasure Coding
blocks fail, they should be detected and reconstructed.

• User configuration: user configurations regulate some sys-
tem behaviors and the guarantees depend on the user set-
tings. For example, the max_hint_window_in_ms parameter
in Cassandra defines the maximum time window the coor-
dinator will generate hints for a dead host.

• Implicit: the semantics are not explicitly defined or docu-
mented, but users expect them to hold for a correct system.

Finding 4: Most (87%) studied failures violate semantics that
are explicitly defined in API specs, system docs, or configs.

Interestingly, in 10% of the studied cases, the system
does not respect its configuration’s semantics. For exam-
ple, if users set acl.inheritance to true, HDFS should en-
able ACL inheritance; but in one case the inherited ACL
permissions are masked [7]. This violation causes security
issues. The problem of misconfiguration is extensively re-
searched [20,21,35,56]. This finding suggests that even when
users set configuration properly, a system can still misbehave.
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As an example of Implicit semantics, in one HBase case [4],
a region is online in server A, but the region location registered
in the meta table is server B. While this consistency semantics
is a common sense, it is not explicitly declared.

Explicit documentation of semantics is indicative of de-
velopers’ awareness of its guarantees and importance. One
hypothesis is that if the semantics in a failure is not docu-
mented, it is understandable that developers did not make
enough efforts to enforce the semantics. This finding dis-
proves this hypothesis. However, the explicit documentations
do not translate into fewer violations. One reason is that devel-
opers often document the semantics in a vague (e.g., “should
produce correct results”) or incomplete way. A more fun-
damental gap is that the documentation is designed to be
human-readable but not machine-checkable. For example, the
semantics for ephemeral znode in ZooKeeper is documented
clearly, but the system does not have any mechanism or tool
to enforce this semantics in deployment.
Implications: Rich sources of documentation exist to lever-
age and judge semantic violations. Developers should move
from documenting semantics in informal text to rigorously
declare semantics that are mechanically checkable and en-
forceable.

5.2 Categorizations of Violated Semantics
Old vs. New Semantics Modern distributed systems often
keep adding new features. For example, the number of client
APIs in ZooKeeper increased from 38 in version 3.4.6 (2016)
to 78 in version 3.6.2 (2020). Similarly, HDFS’ key APIs in
fs.FileSystem increased from 128 in version 2.7.2 (2016) to
162 in version 2.10.0 (2019), along with significant increases
of semantics in other interfaces such as RPC methods.

Since around 90% of our studied failures occurred after
more than two years since the software’s initial release (Fig-
ure 5), a natural hypothesis is that most of them violate some
new semantics. We validate this hypothesis by analyzing the
age of semantics in the studied failures. We define old seman-
tics as ones that exist since the first major stable release of the
system and others as new semantics.

Surprisingly, we find only less than one third (32%) of our
studied failures violate relatively new semantics, while 68%
of them violate old semantics. Old semantics usually repre-
sent the most fundamental functionalities the system provides
since developers implement them first, and they usually un-
dergo extensive testing already. However, our finding suggests
that (1) even with new features added to the system, old se-
mantics are still ones violated the most; (2) even with testing

accumulating over the years, the reliability of old semantics
is not necessarily higher in newer versions. Take ZooKeeper
as an example. Its ephemeral znode interfaces and semantics
have existed since the first major stable release (3.0.0) in Oc-
tober 2008 [1]. However, there are still production failures
violating the guarantees of ephemeral znode reported by users
even 10 years later [15].

We further investigate why old semantics still keep getting
violated. There are three broad reasons: (1) new implementa-
tion is buggy, developers may optimize, refactor or refine the
implementation of existing functionality, which contain bugs
that break old semantics, e.g., a concurrency bug introduced
in changing an implementation to be multi-threaded; (2) new
feature adds buggy interactions, when some new feature is
added, developers may extend existing module to interact
with or support the new feature. For example, after HDFS
introduces the encryption zone feature, it needs to extend the
original snapshot file function and the new handling path is
buggy [6]; (3) latent bugs are exposed, as the most basic se-
mantics, these old semantics’ original implementations can
be complex and contain latent bugs that can only be exposed
in very specific scenario. In one ZooKeeper failure [14], users
find the ephemeral znodes are not deleted when the system
time changes unexpectedly. This bug exists for 6 years be-
fore it is discovered, because neither the testing nor most
deployments would exercise the system with the time change.

Note that we did not count the numbers of semantics in the
study, either for new or old semantics. This is because even
with explicit documentation such as API specs, determining
how many semantics are there for a given API can be subjec-
tive, which depends on the granularity of semantics. Instead,
we objectively judge if the specific semantics violated in a
failure were introduced in the initial release or not.
Finding 5: 68% of the studied failures violate old semantics.
Implications: Instead of having the false hope that old se-
mantics are reliable, developers should invest efforts to pre-
vent semantic violation regressions.

Local vs. Distributed Semantics Since the study subjects
are distributed systems, we analyze whether the semantic vi-
olations naturally require considering multiple distributed
components. This question is important to the design of run-
time verification techniques [43, 44, 48, 57].

We find that indeed 26% of the semantic violations require
global information to judge, e.g., whether the replica place-
ment policy in HDFS is correctly enforced, or whether states
in different Cassandra nodes match the consistency level.

However, interestingly, we find that the majority (74%) of
the violations can be determined in a local scope. For example,
appendTo in HDFS has the semantics of appending data to the
end of a target file and making it persistent. A buggy node
may fail to persist the new blocks or accidentally overwrite
them. The violations can be determined in this node.

One reason is that a distributed system component often
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keeps local copies of states for other components. For instance,
even though ZooKeeper session is a global concept (a client
connection to any follower or leader constitutes a session),
such state is acknowledged to the ensemble. Thus, each node
has a copy of the alive session and node list. The semantics
of ephemeral znode, which require knowledge of the session
information, can thus be checked locally in a ZooKeeper node.

Current runtime verification solutions typically aggregate
global states across all nodes to check property violations.
Obtaining such global information can be both expensive
and tricky, e.g., dealing with consistency issues in capturing
distributed snapshots [23]. Our finding suggests it may be suf-
ficient to use local checkers to expose many semantic failures.
Finding 6: The violations in semantic failures can be usually
(74%) determined in the scope of a single component.
Implications: Employing local checkers can potentially ex-
pose many semantic violations.
Safety vs. Liveness Semantics Some failures break safety-
related guarantees. For example, in Kafka, the maximum num-
ber of consumers in a group should not be larger than a config-
ured limit, but users found more consumers joined the group.

In comparison, other semantics are liveness related. For
example, ZooKeeper specifies that a container-type znode

with no child znodes should eventually be deleted. Even when
we observe some empty container node exists, it does not
necessarily indicate this guarantee is violated because it might
still hold some time later. Without context, one can interpret
some safety guarantee, such as a correct response should be
returned, to be involving liveness, because even if a response
is not received, it could be still on the way. We refer to the
system’s official documentation for making the distinction.
If the documentation explicitly states that when an operation
returns, something (e.g., a notification) will eventually happen,
then a failure about its absence is a liveness violation.

It is generally challenging to check liveness properties [38],
because there can be infinite possibilities in the execution that
eventually produce the desired effect. Fortunately, we find
most (86%) of our studied failures violate safety semantics.
Finding 7: 86% of the studied cases violate safety semantics.

Implications: There is usually a fixed time point to determine
if a system has violated its semantics.

6 Why Do Silent Semantic Failures Occur?
We analyze what causes a system to break its semantics. We
are interested in identifying potential common bug patterns in
the root causes, which can inform the designs of bug finding
tools to eliminate semantic failures before production.

Some semantic failures are caused by bugs such as memory
error, data race, and integer overflow, which are well studied
with many tools designed to detect them. We find only 12% of
the cases are caused by such bugs. The remaining failures are
caused by system-specific logic bugs including design flaws,
which are difficult to be caught by bug detection tools.

op1_start op1_end

Timeshort-lived 

semantics

long-lived semantics

op2_start op2_end

(33%)

(67%)

(33%)

(10%)

1

2

3 (40%) 4 (17%)

Figure 6: Timing of semantic violation.

An interesting finding is that even for failure cases that
violate the same or related semantics, their root causes can be
quite different. Take the ZooKeeper ephemeral znode as an
example: (1) ZK-1208 is caused by a race condition: when
ZooKeeper is handling the close session request, it deletes
ephemeral znodes and then removes the session, in between a
create operation causes new ephemeral znodes to be added;
(2) In ZK-3144, the violations are caused by an incorrect
order: during request processing, the lastProcessedZxid is
updated before sessions are modified, so a snapshot may not
include the change and the ephemeral node is not deleted
after log replay; (3) In ZK-2355, the violations are caused
by buggy error handling: follower fails while reading the
proposal packet, but resetting lastProcessedZxid is missed in
the error handler; (4) In ZK-2774, the system time of a server
is changed unexpectedly, and session expiration codes rely
the absolute system time, which causes the ephemeral znodes
to persist after the client is disconnected for a long time.
Finding 8: Only 12% of the studied failures are caused by
well-defined bugs such as race conditions, while most cases
are caused by a wide variety of logic bugs. Even for failures
violating the same semantics, the root causes are diverse.
Implications: It can be challenging to exploit code patterns
to eliminate semantic violations through static bug detection.

7 How Are Semantic Failures Manifested?
Timing of Violation Understanding when semantics are
violated can shed light on how to detect the violation.

As Figure 6 shows, some semantics only exist during the
execution of its associated operation (at return point), e.g.,
read operation should return the latest data. We call them
short-lived semantics. In comparison, some semantics exist
even after its associated operation finishes, e.g., the specified
file in create operation should be persisted and continue to
be available after create returns. They often only cease to
apply after some other event, e.g., until a delete operation on
the same file is executed. We call them long-lived semantics.

Interestingly, we find that 67% of the cases violate long-
lived semantics. This is partly because these semantics have a
larger “vulnerability” window compared to short-lived seman-
tics: a violation can occur anytime in its lifespan. ZooKeeper
ephemeral znode and watches are such examples. Essentially,
the system must maintain the promise for a long time.

We categorize the violation timing into four scenarios: at
the end of short-lived semantics (¬), e.g., wrong response,
at the start () or in the middle (®) or near the end (¯) for
long-lived semantics. An example for  is in HDFS-12217
the snapshot operation did not capture all open files, which
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tions. Some combinations are omitted in the diagram for readability.

violates the long-lived snapshot semantics since the beginning.
An example for ® is HDFS-9083: at the block creation time,
the block placement policy is honored; but after some node
failures, all replicas of the block reside on the same rack. ¯
happens when the semantics should cease to apply but did
not, e.g., ephemeral nodes should be removed when clients
timeout. Figure 6 shows the distributions of the four scenarios.
Finding 9: Near two thirds of the studied cases violate some
long-lived semantics. In 40% of the cases, the semantics are
initially honored but are violated in the middle.
Implications: It is crucial to continuously monitor semantic
guarantees, even after the initial semantic check passes.

Failure Triggering Conditions We further examine what
triggers the semantic failures. Figure 7 shows the result.
Finding 10: More than half of the studied failures are trig-
gered by specific requests, while 39% of the failures require
particular timing to trigger. Semantic failures often (41%)
only manifest themselves under multiple types of conditions.

HDFS-14514 is an example of semantic failure that re-
quires multiple types of triggering conditions. The semantic
violation (read out file size from snapshot is incorrect) can be
only triggered when 1) snapshot.capture.openfiles is set; 2)
create empty directory and encryption zone; 3) a client keeps
a file open for write under the empty directory; 4) append
several times; 5) perform a maintenance operation, snapshot.

We also find that in 23% of the cases, the triggering con-
dition is certain system maintenance operation, such as com-
paction, cluster upgrade, node decommissioning. Such events
do not occur frequently. They trigger semantic violations of-
ten because during the maintenance operation, the system
execution enters a different mode, which exposes rare bugs.
Implications: The reliability of semantics is vulnerable to
maintenance operations or node events. Operators and the
system should check violations during and after such actions.

8 Current Practice for Semantic Failures
8.1 Testing
Since semantic violations concern functionality correctness,
testing is responsible for catching them. The prevalence (Sec-
tion 4) of many semantic failures in production seems to
suggest a lack of testing. But that is not the case. The systems
we study have extensive test cases—a median of 1309 test
files. In addition, in 73% of the studied cases, the system has
at least one test case covering the violated semantics.

Then why the studied failures are not exposed during test-
ing? The earlier Finding 10 provides some clues. In many
cases, even though there are related test cases, they lack some
operations or arguments key to trigger the production failure.
Even when the test cases have the proper operations and argu-
ments, they only exercise the system under one timing, one
configuration or normal scenarios, while the bugs are only
triggered with unique timing, configuration, or node failures.

Are the failure triggering conditions so special that it is
impossible for developers to foresee? Interestingly, we find
that in many cases, similar triggering scenarios do exist in the
test suite but they are not used in testing the violated feature.

Finding 11: Semantic violations occur not simply due to a
lack of testing. The violated semantics are usually (73%)
covered by some existing test. In more than half of the studied
failures, similar triggering conditions exist in the test suite.

A fundamental gap is that developers tend to write tests
driven by examples or fixes for a specific bug. Such tests
are not expressive enough to preserve the underlying se-
mantics and prevent regression. Consequently, developers
spend repeated efforts to add tests. In HDFS-14514, the
server reads snapshot file with incorrect length from encrypted
zones. This exact semantics is already checked in an existing
test case. If that test “copies” one line of test configuration
dfsAdmin.createEncryptionZone(...) from other tests, the
new bug will be triggered and exposed.

Implications: Coverage of semantics alone is insufficient.
Developers should introduce variances in existing test cases.
It is also useful to “copy” triggering conditions across tests.
More fundamentally, developers should write more general
tests for the semantic properties rather than specific examples.

8.2 Assertions
Assertions are a common method for catching logic bugs,
which are major contributors to semantic failures (Section 6).
They are typically only used in development and are turned
off by default in release build for performance and stability.

Some of our studied systems use assertions in production:
MongoDB has added many invariant checks since 2014 [11].
Interestingly, as Section 4 shows, MongoDB has the lowest ra-
tio of semantic failures compared to other systems. While this
practice may cause instability, e.g., some users got infrequent
crashes due to invariant check failures after upgrading to new
versions [12], developers still prefer to fix the underlying bugs
rather than turning off assertions completely.

We observe two gaps in the current practice. First, most
existing assertions are pre-condition checks on the sanity of
function arguments. They are too low-level to catch semantic
violations, which require checking system functionalities and
usually the operation history (e.g., in checking consistency
violations [48]). Second, existing assertions are usually only
activated once during an operation, e.g., the entry of a function.
But many semantics are long-lived (Section 7), which require
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continuous validation until the lifespan of semantics ends.
Finding 12: Although in 51% of the failures the buggy func-
tions have some sanity checks, few (9%) cases can be poten-
tially detected by adding proper sanity checks.

Implications: Enabling assertions helps reduce silent seman-
tic violations. However, developers should add more semantic-
level invariant checks besides sanity checks.

8.3 Observability
Since our studied failures are silent violations, how do users
notice these subtle failures then? Understanding this question
can reveal insights to improve the observability of semantic
failures. We carefully examine the discussion threads in each
ticket. In 34 cases, users mentioned their experience clearly.

For all of these cases, users discovered the issues through
noticing something suspicious in some “side channels”. We
categorize them into two types: (i) benign errors in other
requests (32%); (ii) anomalies in logs, files, or performance
of other tasks (68%). In HBASE-11654, users find out the
violations by noticing splitting directories in /hbase/WALs/,
which is “very strange” because “those logs should have been
replayed and deleted”. In KAFKA-9137, users observe the
failure by seeing an increase in eviction rate in the logs. In
CASSANDRA-6527, users found tombstones appeared even
though they never used delete for a column family.

It might seem that we can rely on users to manually detect
system semantic failures. Note that there is a survival bias: our
studied cases by definition are identified, but in practice silent
semantic violations can be easily missed because (i) users do
not monitor the systems 24×7; (ii) when they check, they may
not inspect the proper signals. When users notice the failures,
the damage may be already done. In CASSANDRA-6527,
users commented: “Fortunately, we have noticed that quickly
and canceled the migration. However, we were quite lucky.”

How to make semantic failures more observable? First, if a
system API has no interaction with others, it is hard to judge
its correctness based on a single piece of information. In prac-
tice users often use multiple related APIs to cross-compare re-
sults. In HBASE-15236, users observe the violations because
Get and Scan return different sizes for the same bulkloaded
hfiles. Second, current systems often do not expose enough
information about theirs internal states, thus users have to ad-
hocly infer whether a promise is obeyed or not. Existing error
messages (e.g., a legitimate exception for another request)
only focus on the current request, which is hard to link to the
semantic violation in past correlated requests.
Finding 13: Semantic violations are currently observed from

“side channels”: 32% from errors in other requests, 68% from
anomalies in logs, files or performance of other tasks.

Implications: Designs of overlapping APIs improve observ-
ability of semantic violations. Systems should provide more
admin APIs for convenient query of their internal states. Error
messages should provide hints about past correlated requests.

9 Oathkeeper: A Semantic Violation Checker

Guided by our study, we build a tool Oathkeeper to check
semantic violations for large-scale distributed systems.

9.1 Design Overview and Workflow
Oathkeeper takes a runtime approach to check semantic viola-
tions in production. This choice is motivated by our findings
that semantic failures have diverse root causes (Finding 8) and
often difficult to expose in testing due to complex triggering
conditions (Finding 10).

Central to a runtime verification approach is what invari-
ants to use. Existing solutions rely on users to write dis-
tributed assertions to check the correctness of distributed pro-
tocols [43, 44] or network functions [57]. In those scenarios,
the semantics to check are limited and well-defined. But in
our cases, the systems have abundant (Table 1) and loosely-
defined semantics. Even for semantics that can be described in
simple expressions informally, mapping them to the concrete
checkable invariants in the complex systems code is hard.
These factors make manual construction a daunting task.

Insight and Key Idea. The insight behind Oathkeeper is
based on our finding that the majority of the studied failures
violate old semantics (Finding 5) despite the decent cover-
age of testing (Finding 10). When a semantic failure occurs,
developers usually add regression tests. But these tests only
check if the specific bug is fixed in a specific setup, while the
same semantics can be violated repeatedly in other scenarios.

Based on this insight, Oathkeeper leverages the existing
regression tests developers write for past semantic failures
and automatically extracts the essence—the violated seman-
tic rules. Oathkeeper then enforces these rules at runtime to
detect future semantic violations, which may be caused by
different bugs under different conditions.

Input and Output. To apply Oathkeeper to a new system,
users supply a system-wide configuration and a list of past
semantic failure metadata. The former provides basic infor-
mation about the system such as the compilation command
and test directory, and optionally the classes to include for
analysis. The latter metadata is provided in the form of git
commit id (for version switching) and regression test name.

Oathkeeper outputs the likely semantic rules (Section 9.3).
Prior runtime verification tools focus on invariants expressed
as predicates among key state variables in a system such
as lock_id and lock_mode. This representation alone can be
insufficient or complex to express the semantics of large dis-
tributed systems. Instead, Oathkeeper focuses on rules that
describe relations among semantics-related events, particu-
larly operation invocations and state updates. Such an event
relation rule is expressive to capture various semantics.
Workflow. Figure 8 shows the tool’s workflow. Oathkeeper
operates in two stages. In the offline stage, Oathkeeper instru-
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Figure 8: Workflow of Oathkeeper.

ments the target systems to record major events (¶). It then
exercises the system twice with the regression tests: once us-
ing the patched version and the second time using the buggy
version. This will generate two sets of traces (·). The infer-
ence engine infers likely semantic rules from the traces of the
patched version (¸). The verifier applies the inferred seman-
tic rules against the traces of the buggy version and output
rules that are violated in the buggy traces (¹). We assume
these violated rules are potentially related to the semantic
failure. Further optimizations are applied to remove noises
and redundancies (º). In the online stage, Oathkeeper only
performs minimal instrumentation that is relevant to these
final semantic rules from the offline stage. The event tracer
ingests traces from the system in real time. The Oathkeeper
verifier continuously checks the traces against the deployed
semantic rules and reports violations (»).

9.2 Instrumentation and Trace Generation
For both inferring semantic rules and runtime verification,
we need to first instrument the system to obtain execution
traces. The Oathkeeper traces use a uniform event schema
that captures operation-related events and state-related events.

Oathkeeper designs a load-time instrumentation library
that performs bytecode manipulation when a target system is
loaded. This way of instrumentation is convenient (without
re-compiling and re-packaging the system) and transparent.

To record operation events, the library adds hooks at the
beginning, return and exception point of a method. To record
state events, Oathkeeper takes a patch plus base approach.
It analyzes the given semantic failure patch and automati-
cally includes the list of classes involved in the patch file.
Users can optionally specify names of some important system
classes, such as SessionTrackerImpl. With the combined list
of classes, Oathkeeper performs simple analysis at the load-
ing phase of these classes to retrieve their member variables
of primitive or collections types, and treat them as the state
variables. It then identifies instructions that update these vari-
ables and insert a hook to emit a state update event with the
relevant context (variable name, location, etc.).

For each given test, Oathkeeper switches the target sys-
tem to the patched version. The tool executes the test with
the instrumented system and generates the trace of events.

Template Example

p⇒ q decommission a datanode should trigger reconstruction
s ↑⇒ p when datanode changes, associated watcher notifies clients
s ↑⇒ k ↑ after session disconnection, ephemeral node is removed
(s = c)⊕q read-only server should not provide write access
p+∆t⇒ q inserted data should expire after the TTL is reached.
s ↑→ q cf schema should be altered before alter command returns
p⇒�(s ↑,k ↑) after snapshot renaming, either new snapshot creation and

old snapshot deletion both occur or none of them occur

Table 3: Some templates integrated in Oathkeeper. p, q are opera-
tions, s and k are states, t is time, c is constant. ¬p means p can not
occur. ↑ means state changes. p+∆t means time t after p occurs.

Then Oathkeeper reverts the target system to the buggy ver-
sion (snapshot prior to the patch commit id). Since the buggy
version does not contain the test, Oathkeeper copies the re-
gression test from the patched version and executes it to get
the buggy trace. If the test cannot directly run on the buggy
version due to interface changes (e.g., a function used in the
test is not public in the buggy version), the tool supports user-
provided patches to fix the compatibility issue.

The trace is stored in a JSON file for ease of deserial-
ization. An example trace entry is {"type": "OpTriggerEvent",

"data":{"opName": "zookeeper.FileSnap.deserialize", "time":

1654026992, ...}}. The trace scale is usually moderate, because
it is generated from tests. For example, with ZooKeeper,
even under the full instrumentation mode (instrumenting
all classes), most end-to-end tests generate less than 10,000
events. A common scale is several thousands. We see large
traces in only 5/273 tests that produce over 500,000 events.
Under the diff mode (only instrument the classes affected by
the patch), the trace typically has hundreds of events.

9.3 Template-Driven Inference
A key challenge in the semantic rule inference step of
Oathkeeper is to integrate domain knowledge without requir-
ing significant manual effort, while also having reasonable
accuracy and efficiency. We take a template-driven approach
to address this challenge. We first summarize general seman-
tic rule patterns, such as happens-before relationship, atom-
icity, periodicity. For each pattern, we define one or more
parameterized templates, such as a state change event for
s must happen before the completion event of operation p.
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public abstract class InferScanner {

//init state variables

abstract void prescan(Set<Event> eventSet);

//always need to go through the whole traces

abstract void scan(Event event);

//check states after scan, and generate invariants

abstract List<Invariant> postscan();

}

public abstract class VerifyScanner {

//init state variables

abstract void prescan();

//return true if continues to scan, otherwise break

abstract boolean scan(Event event, Context context);

//check states after scan, and judge

abstract InvState postscan();

}
Listing 1: Inference and validation interfaces for each template.

Algorithm 1: Generic inference and validation workflow.
Input: L: a trace (list of events)
Output: a list of inferred invariants (one inv. is a template w/ context)
Func Infer(L):

/* get unique events in the trace (we define equality

individually for different types of events) */

unique_events← Set(L)
prescan(unique_events)

foreach event ∈ L do scan(event)

return postscan()

Input: L: a trace (list of events), context: parameters in templates, e.g.,
if an invariant is a1⇒ a2, context is a1 and a2

Output: the checking result of invariant (pass, fail or inactive)
Func Verify(L, context):

foreach event ∈ L do
if scan(event,context) then break

return postscan()

Func Main(Lpatched , Lbuggy):
inv_list← /0

foreach inv ∈ Infer(Lpatched) do
if Verify(Lbuggy, inv.context) == InvState.FAIL then
inv_list.add(inv)

return inv_list

Oathkeeper currently supports 18 templates. Table 3 shows
several examples. Our technical report [47] shows the full list.

The inference engine implements an inference algorithm
for each template. The algorithm checks if there are matches
in a given trace and derives concrete values to each template
parameter if so. We call each match a context for the template,
which is a potential invariant. For one template (e.g., p⇒ q), a
trace can have multiple contexts (e.g., a1⇒ a2 and a1⇒ a3).

The templates allow encoding domain-specific semantics
without significant specification effort. They also restrict the
search space so the inference engine only analyzes trace
events that match the template structure and parameter types.
While these templates may not represent the exact or full se-
mantics like a high-level specification does, they can capture
the essential ingredients for making the semantics hold.

The inference engine takes the trace obtained from running
the regression tests against the patched system. Each tem-
plate class implements an infer function that returns a list of

Algorithm 2: Implementation for template p⇒ q.
Func ImplyTemplate::InferScanner::prescan(S):

foreach event ∈ S do C.put(event, {})

foreach event ∈ S do
foreach event2 ∈ S do

if event != event2 then
C.get(event).put(event2, 0)

C.get(event2).put(event, 0)

Func ImplyTemplate::InferScanner::scan(event):
foreach (k,v) ∈ C.get(event) do v ← v + 1

foreach event2 ∈ C do
if event == event2 then continue
val ← C.get(event2).get(event)

if val > 0 then C.get(event2).put(event, val - 1)

Func ImplyTemplate::InferScanner::postscan(L):
lst ← []

foreach (k,v) ∈ C do
foreach (k2,v2) ∈ v do

/* add potential invariants when counter is 0 */

if v2==0 then lst.add(genImplyInv(k,k2))

return lst

Func ImplyTemplate::VerifyScanner::prescan():
ifHold ← true

ifActivated ← false

counter ← 0

Func ImplyTemplate::VerifyScanner::scan(event, context):
if event == context.left then

counter ← counter + 1

ifActivated ← true

else if event == context.right && counter > 0 then
counter ← counter - 1

return true

Func ImplyTemplate::VerifyScanner::postscan(L):
if counter != 0 then ifHold ← false

if !ifHold then return InvState.FAIL

if ifActivated then return InvState.PASS

else return InvState.INACTIVE

rules from the trace. Most templates follow three phases in
the infer function: pre-scan, scan, and post-scan (interfaces
defined in Listing 1). The pre-scan step typically builds an
index of the unique event set in the trace. The uniqueness
is determined by a custom function we define for different
types of events. For example, operation invocation events are
unique based on the signatures of invoked functions. The
scan step iterates through each event in the trace and up-
dates bookkeeping data structures such as an event occur-
rence map. The post-scan step generates invariants based on
the bookkeeping data structures. Templates that do not follow
this pattern can customize the procedures. For example, the
AfterOpAtomicStateUpdateTemplate iterates forward once
and scans backwards once; the StateEqualsDenyOpTemplate

scans the trace for each state type in the test.
The core inference algorithm for each template, while dif-

ferent, is relatively straightforward. It essentially involves
identifying events in the trace that match the type of a tem-
plate’s parameter, enumerating hypotheses (candidates) from
the contexts, and validating the hypotheses against the trace.
Since the trace size is moderate, we can afford enumerations.
Example. We describe the inference of a representative tem-
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Figure 9: Inference and validation algorithm example.

plate p⇒ q, which represents that every invocation of oper-
ation p implies a subsequent operation invocation of q. For
example, createSession should usually imply closeSession.
The steps are listed in Algorithms 1 and 2.

We use Figure 9 (a) to show the process of inferring rules of
template p⇒ q from a patched trace [e1,e2,e3,e1,e2]. The
algorithm assumes all pairs <ei,e j> in the unique event set
are candidate contexts to the template, in which ei and e j are
of OpTriggerEvent type and the uniqueness is based on the
operation name. Then it attempts to find counterexamples to
invalidate wrong rules. The inference algorithm of this tem-
plate uses a simple counting approach that runs in three steps.
The pre-scan step constructs a nested map {event: {event:
int}} to record the occurrences for the event pairs. For each
event pair, the counter is initially zero. Then the scan step
iterates through each event e in the trace in order. If e is ei,
i.e., a key in the nested map, we increment the counters for all
entries with <ei, *> keys; if e is e j, we decrement the counters
for entries that have <*, e j> keys and have positive counters.
In the post-scan step, we check the final state of counters. If
the final counter does not reach zero, there is an orphan ei that
does not have subsequent e j. We get e1⇒ e2, e3⇒ e1 and
e3⇒ e2 at the end. Rules like e1⇒ e3 are removed because
no subsequent e3 occurs after the second e1.

9.4 Rule Validation
After step ¸, the inference engine could infer many likely
semantic rules. Oathkeeper then applies these rules against
the buggy traces (¹) and sees which rules are violated. Simi-
larly to inference, each template class needs to implement a
verify function. The verify function also usually consists of
three phases: pre-scan, scan, and post-scan. The pre-scan step
initializes auxiliary data structures specific to the template.
The scan step goes over the events in the trace and updates
the data structures. In some template, the scan step does not
need to iterate through all events in the trace if a contradictory
example is already found. The post-scan step checks the data
structures and returns the result, which could be PASS (rule
is activated and no contradiction is found), INACTIVE (the an-
tecedent of the rule does not occur, e.g., p⇒ q is inactive in
a trace without occurrences of p), or FAIL (at least one con-
tradiction is found). We only preserve rules that pass in the
patched trace and fail in the buggy trace.

Example. Algorithms 1 and 2 show the steps to verify tem-

plate p⇒ q. We use Figure 9 (b) to show the process of vali-
dating inferred rules from (a) on a buggy trace [e1,e2,e3,e1].
There are three rules to verify: e1⇒ e2, e3⇒ e1, e3⇒ e2. In
the pre-scan step, we first initialize a counter for each inferred
rule. The scan step then updates the counter: for rule ei⇒ e j,
if a processed event e matches ei, we increment the counter;
if e matches e j, we decrement the counter if it is positive. All
three rules are active as both e1 and e3 appear in the trace.
The post-scan step marks rules with non-zero counters as
FAIL: e1⇒ e2 and e3⇒ e2.

However, there could still be a significant number of rules
due to noises like unfinished tests (e.g., an assertion failed
in the middle of the test), new type events (new methods
introduced), coincidence, and methods that are used for testing
only. To reduce these noises, the verifier validates (º) the
candidate rules against traces obtained from all test cases,
under the patched version, and discards rules that do not hold
in all traces. In addition, we filter uninteresting rules about the
system start-up or shut-down methods or thread run methods.
This is achieved by inserting special marker events at the
start and end of test method, and only running the inference
algorithms on trace region within the markers.

9.5 Runtime Checking
Oathkeeper deploys the refined semantic rules with the tar-
get system in production, along with the verifier and event
tracer. Oathkeeper performs load-time instrumentation to the
production system in a wrapper class of the entry points. Dif-
ferent from the offline stage, the instrumentation is selective
to only the deployed rules and is thus lightweight. The event
tracer stores in-memory traces from the target systems.

The runtime verifier schedules periodical tasks that validate
the current trace against each of the deployed semantic rules.
It reuses the same checking logic defined in the function
verify of the template. When the engine finds a semantic
rule reported as FAIL, it records the counterexamples in the
traces for debugging. It also schedules a second check on this
violated rule again shortly to tolerate transient violations or
inconsistencies in the trace. For high availability, Oathkeeper
generates alerts in the log upon detection of potential semantic
failures and does not attempt to crash the system.

9.6 Optimizations
The validation step can be time-consuming. With N (often
thousands) candidate rules and M (often hundreds) test cases,
we need to get M traces and check N×M times. To reduce the
validation time, we introduce a survivor optimization. After
a test finishes, we validate the rules, if some rule is already
“killed” (invalidated) by this test’s trace, it will not be carried
over to the remaining tests. Therefore, only the survived rules
will be validated to the end. Another optimization is to run
more closely related tests first. The rationale is that some test
takes a long time to run but is irrelevant to a given rule (thus
the test’s trace will not disprove the rule). By prioritization,
we can potentially invalidate false rules faster.
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We also add several optimizations to reduce the runtime
overhead. First, the event tracer only preserves the most re-
cent events within a time window, since always checking
full traces from the start is wasteful. The time window is
configured larger than checking frequency to avoid missing
checking events. The events involved in time-related semantic
rules are excluded as their expiration time is based on their
parameters. Second, to achieve both high concurrency and
low memory pressure, we decouple the checking from the
event emission with a ring buffer design inspired by high-
performance message queues [10]. Third, to avoid massive
new object creation frequently triggering garbage collection,
we reuse expired event objects in the ring buffers. Oathkeeper
also pre-allocates buffers for each type of events at the instru-
mentation phase to prevent buffer initialization blocking.

9.7 Implementation
We implement Oathkeeper in Java (JDK 8). Its instrumen-
tation library is built based on Javassist for class bytecode
manipulation. Its test engine leverages JUnit to manage and
execute test cases. The tool also includes a workflow script
such as checking out patched and buggy versions and check-
ing a semantic rule against given traces.

9.8 Limitations
Our approach makes several assumptions: 1) semantics should
be expressible with simple relations of events; 2) the system
has a number of test cases with good quality; 3) the failure
patch should not involve significant redesign or interface in-
terfaces. If some assumption does not hold, Oathkeeper may
fail to deduce good semantic rules.

10 Evaluation
We have integrated Oathkeeper with ZooKeeper, HDFS and
Kafka. We evaluate (1) whether Oathkeeper can leverage past
semantic failures to check new violations; (2) what runtime
overhead it incurs to the target system. The experiments are
done in servers with 20-core 2.2 GHz CPUs, 64 GB memory,
running Ubuntu 18.04. The Oathkeeper check engine is con-
figured to schedule and check rule violations every second.

10.1 Generation Overview
Oathkeeper requires old semantic failures and their associ-
ated regression tests as input to extract semantic rules. We
select old semantic failures and their regression tests to re-
produce (8 for ZooKeeper, 10 for HDFS and 8 for Kafka).
These tests cover major functionalities of the three systems.
We add a switch in the system code to easily enable and dis-
able the patch for the semantic failure bugs. We then apply
Oathkeeper to the source code to add instrumentation points,
run the regression tests with the patch switch turned on and
off, and execute other steps in Oathkeeper (Section 9.1). For
each case, Oathkeeper infers many raw semantic rules. After

JIRA Id Violated Semantics

ZK-1496 ephemeral node should be deleted after session expired
ZK-1667 watcher should return correct event when client reconnected
ZK-3546 container node should be deleted after children all removed
HDFS-14699 failed block need to be reconstructed
HDFS-14317 edit log rolling should be activated periodically
HDFS-14633 file rename should respect storageType quota
KAFKA-12426 partition topic ID should be persisted into metadata file

Table 4: Evaluated newer semantic failures.

the validation and optimization step, the rule set is signifi-
cantly reduced. In total, Oathkeeper extracted 285 rules for
ZooKeeper, 1,209 rules for HDFS, and 150 rules for Kafka.

10.2 Checking Newer Violations
We evaluate whether the inferred rules are useful to catch new
semantic failures. Given Oathkeeper’s approach, it is likely
less effective with unseen semantics. We reproduce 7 newer
(9–34 months later) failures (Table 4) that violate related
semantics in the old cases, but with different root causes.
With the inferred rules, Oathkeeper detects violations for 6
of them. These newer violations are known bugs by the time
we conducted this experiment. However, their root causes
and triggering conditions are completely different from the
failures used to extract semantic rules. Oathkeeper detects
these newer violations with only knowledge from the old
failures, which demonstrates the tool’s detection capability.

We show one example in Figure 10. ZK-1496 is not in our
study dataset, but its symptom is similar to a studied failure
ZK-1208 that was reported 9 months ago prior to ZK-1496 in
an older release. Users found that the ephemeral znodes were
not deleted long after the client exited. The root cause is a
race condition bug that while the session tracker is removing
the expired session, another thread is processing an ephemeral
node creation request. In ZK-1208, developers added a fix
to mark sessions as closing to prevent ephemeral node cre-
ation on expiring sessions, and introduced a regression test.
Oathkeeper executes the regression test on ZooKeeper twice
with patch enabled and disable, and generates two traces (c)
and (d). Then Oathkeeper infers rules (e) from the patched
traces. Not all inferred rules are useful. Oathkeeper only pre-
serves rules that fail in buggy traces and pass all tests (f).
Rules such as 3 are filtered when being validated on all tests.
Finally, two verified rules 1 and 2 detect the violations (g).

Oathkeeper fails to detect ZK-1667: client A sets a watch
on /d and then disconnects, client B deletes /d and recreates
it; when client A reconnects, it receives a NodeCreated event
instead of NodeDataChanged event. The violated semantics fits
into one of our templates. However, due to the quality of the
old watch test in our pool, Oathkeeper infers other rules.

The average detection time is 0.91 seconds. This result
does not contradict with the long-lived semantics finding in
Section 7. In the experiments, we trigger the conditions to
reproduce the failure soon and measure the detection time
from the start time of the violation.

We compare Oathkeeper with a state-of-the-art invariant
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void checkSession(...) {
-    if (session == null) {
+    if (session == null 
+        || session.isClosing()) {
        throw new SessionExpiredException();
    }
...
void pRequest2Txn(...){
     case OpCode.create:
         checkSession();

void testCreateAfterCloseShouldFail() {
  for (int i = 0; i < 10; i++) {
    // open a connection
    ConnectRequest conReq = new ...;
    // close connection
    RequestHeader h = new ...;
    // create ephemeral znode
    CreateRequest createReq = new...;
  }
  assertEquals(1, zk.getChildren("/").size());
}
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Figure 10: Example: Oathkeeper workflow of using ZK-1208 to detect ZK-1496.
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Figure 11: Detection of 22 semantic failures in ZooKeeper (sorted
by the bug ticket time in ascending order) when applying Oathkeeper
on a sliding subset of the failures for inferring semantic rules.

checking tool, Dinv [30]. Dinv is designed for checking dis-
tributed protocols. Its core invariant inference component is
based on Daikon [26] that mines variable-level relationship.
We instrument the state variables in the two systems and ap-
ply Daikon to traces from the system test cases. The inferred
invariants only detect 1 case (ZK-1496) and are highly noisy.

We conduct an additional “cross-validation” experiment.
Specifically, we collect a larger pool of 22 semantic failures
in ZooKeeper. The failures are sorted from older to newer. We
feed each failure to Oathkeeper and measure how many of the
22 failures can be detected. For 16 cases, the rules inferred
from one case only detect that case. It does not imply, though,
these rules are useless. They might help detect failures outside
the pool. Interestingly, for the remaining 6 cases, their inferred
rules detect a median of 5 failures. For example, rules from
ZK-2355 can detect 6 other failures besides itself. Figure 11
plots the aggregate detection result.

10.3 Performance
Figure 12 shows the performance of running Oathkeeper for
the 26 old cases. Our template-based inference is fast. The
median time to finish inference is 6.5 s. The median trace
generation time is 153.5 s. The most time-consuming part
is verifying the inferred rules against the system test suite,
because running the full test for the three systems alone takes
a long time. The end-to-end validation time is 2196 s (me-
dian). After discounting the original test execution time, the
median validation time is 301 s. The survivor optimization we
introduce (Section 9.4) helps. In one time-consuming case, it
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Figure 12: Time to generate trace, infer rules, and verify rules
against test suite. ZK: Id 0–7, HDFS: Id 8–17, KF: Id 18–25.

Base 25% 50% 75% 100%
ZooKeeper 418.27 417.63 416.71 416.55 416.1
HDFS 174.55 174.56 172.10 172.10 172.06
Kafka 30,759.49 30,546.00 30,377.50 30,246.04 30,183.15

Table 5: System throughput (op/s) with varying percentages of se-
mantic rules enabled. The 100% represents 285 rules for ZooKeeper,
1,209 rules for HDFS, and 150 rules for Kafka.

reduces the end-to-end validation time from 8104 s to 5024 s.

10.4 Runtime Overhead
We measure the overhead Oathkeeper introduces to the sys-
tems at runtime. The main source of overhead comes from
the added instrumentation to emit traces; the rule checking
does not impact the system much because it is done asyn-
chronously. Oathkeeper only adds instrumentation relevant to
the deployed rules to minimize the overhead. Naturally, more
rules lead to higher overhead. We evaluate the overhead as a
function of the percentage of enabled rules. For ZooKeeper,
we run the workload of 15 clients sending 15,000 requests
(40% reads, 60% creates and writes). For HDFS, we run the
built-in benchmark NNBenchWithoutMR which creates and
writes 100 files, each file has 160 blocks and each block is
1MB. For Kafka, we run the workload of producing 1 mil-
lion 16KB messages. Table 5 shows the result. With all rules
enabled, the average system throughput overhead is 1.27%.

Our initial event tracer used an array list with synchroniza-
tion, which resulted in a 31% overhead under heavy work-
loads. We later implemented a more complex non-blocking
queue, but the overhead is still large. After investigation, we
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found the overhead mainly comes from memory and GC in-
stead of synchronization, which motivated our ring buffer
design (Section 9.6) that significantly reduced the overhead.

10.5 Rule Activation and False Positive
We deploy the inferred rules to a cluster of ZooKeeper, HDFS,
and Kafka instances. We run a set of workloads against the
instances. We first measure the rule activation ratio during
the experiment. A rule is activated if the check engine finds
the antecedent of the rule has occurred. For ZooKeeper, 11%
of the rules are activated. The remaining rules are not acti-
vated due to the lack of workloads, faulty conditions, etc.,
to trigger the antecedent events. For HDFS and Kafka, the
activation ratio is 66% and 48%. We then measure the false
positive ratio among the activated rules. The result is 4% for
ZooKeeper, 9% for HDFS, and 12% for Kafka. This result
benefits from the validation steps described in Section 9.4:
Oathkeeper eliminates falsely inferred rules by validating the
rules against both the buggy trace and the traces from all test
cases of a target system. Adding profile runs or a dynamic
ban mechanism can further remove the false rules.

11 Related Work
Semantic Bugs. Several studies [42,55,58] analyze the preva-
lence of semantic bugs in open-source server software. Our
study analyzes semantic failures in distributed systems. Be-
yond the difference that we investigate distributed systems,
the study of bugs is in general a complementary effort to
the study of failures. The former focuses on analyzing the
static code patterns, while the latter focuses on the dynamic
manifestations and system misbehavior.

Several solutions are proposed to detect semantic bugs in
file systems and DBMS, including cross-checking multiple
file system implementations [50], fuzzing [39], and testing
using pivoted query [54]. Both cross-checking and fuzzing
focus on finding bugs offline. Oathkeeper focuses on a com-
plementary direction of inferring semantic rules for runtime
checking. We hope our study can motivate future work to
extend these solutions to detect semantic bugs in distributed
systems. We observe some open challenges to cross-check
distributed systems: distributed systems usually provide a
wide variety of semantics that are less rigorously specified
compared to file systems, which have well-defined seman-
tics (e.g., POSIX standard) and many implementations. Each
distributed system has its unique semantics and may not be
cross-checkable. In addition, they often contain many internal
and background mechanisms that provide semantic guaran-
tees but the semantics are not easy to be tested. For fuzzing,
the challenge is that many silent semantic violations require
external faulty events (e.g., node restarts, network error) to
trigger besides input. Thus, fault injection testing is needed.

Distributed Systems Failure Study. Understanding failures
has been an important theme in distributed system literature,
with a series of empirical studies [16, 17, 19, 25, 31, 32, 36,

37, 46, 51], e.g., on fail-slow faults [32], gray failures [37],
and network partitions [17]. These failures usually have some
error signals such as timeouts. Our study complements these
studies and focuses on the under-explored silent semantic
failures in distributed systems.

Runtime Verification. Prior works have explored runtime
assertions to verify distributed protocols [43, 44], file sys-
tems [28], and network functions [57]. Runtime verifica-
tion [34] is also studied in embedded systems and Java bench-
mark programs [24]. Recent works [45, 46] propose intrinsic
watchdogs that detect partial faults with clear error signals.
Lu et al. propose a runtime checker for consistency viola-
tions [48]. Overall, there is a lack of runtime verification
solutions for monitoring the semantic correctness of large-
scale distributed system implementations. Our proposed tool
Oathkeeper explores automatically extracting semantic rules
to check a variety of semantics for large distributed systems.

Invariant Mining. Inferring likely invariants from software
execution traces have been studied, e.g., Daikon [26] and
DIDUCE [33]. They mainly focus on mining invariants on
the relationship of program variables for single-component
software, e.g., off < array.length. These invariants are too
low-level to capture the semantics of distributed systems.

Dinv [30] is proposed to infer protocol invariants of pro-
gram variables across nodes. It runs complex program slicing
to instrument program variables influenced by network com-
munication. It then uses Daikon to infer invariants from the
logs of running the system’s test suite. I4 [49] infers inductive
invariants for verifying distributed protocols.

Oathkeeper is complementary to the two efforts. Instead of
protocols and variable relations, we focus on inferring high-
level semantic rules for large distributed systems, most of
which are not about protocols. Also unlike Dinv, Oathkeeper
does not rely on complex static analysis to work and thus
does not suffer from analysis inaccuracies and scalability
limitations. Oathkeeper takes a unique approach of leveraging
past failures and semantic templates to extract semantic rules.

12 Conclusion

Silent semantic violations pose a severe challenge to dis-
tributed systems reliability. This paper sheds light on this
under-explored yet important problem by presenting a study
on real-world failures in popular distributed systems. It re-
veals that sadly “a promise is often not a promise”. Guided by
our study, we design a tool Oathkeeper that automatically ex-
tracts semantic rules from past semantic failures, and enforces
these rules at runtime to check future violations.
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