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Enabling large models through scaling that are prone 
to silent errors
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A silent error in AWS Transformers Neuron, a 
machine learning inference library

Goal: Slice key tensor from query-key-value matrix
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Fix is simple, but difficult to detect

ML pipeline consists of multiple modules 

Optimizer

Scheduling

Sharding

Backend

No explicit error signals

Bug causes incorrect model outputs

Crash Hang

--- attention.py
slice_lim = active_qkv.size[-1]//
  (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
  (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

+++ attention.py
slice_lim = active_qkv.size[-1]//
  (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
  (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=n_heads_tp*slice_lim)

*This bug is already fixed



Silent bugs are tricky since they are subtle
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Our Position: Expose silent errors before 
deployment

Our Position: Guarantee absence of errors in 
pipelines

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE ‘22], NNSmith [ASPLOS ‘23], MLIRSmith [ASE 
‘23], PolyJuice [OOPSLA ‘24]

Fault-tolerant to failures
Relies on explicit error signals

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23], 
ReCycle [SOSP ‘24]

Detects many bugs
No guarantee of absence of bugs



Developers approach in debugging is ad-hoc
Examine intermediate tensor values in the entire huge code space manually 

attention.py
print(...)
slice_lim = active_qkv.size[-1]//
  (n_heads_tp + 2 * n_kv_heads_tp)
print(...)
active_k = hlo.slice_along(active_qkv, -1,
  (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

print(...)
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Optimizer

Scheduling

Sharding

Backend

Numerous amount of phases
Hard to differentiate correct and wrong tensors due to 
floating-point round-off errors
Tedious to manually piece tensors on multiple devices to 
match single on



--- attention.py
slice_lim = active_qkv.size[-1]//
  (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
  (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

+++ attention.py
slice_lim = active_qkv.size[-1]//
  (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
  (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=n_heads_tp*slice_lim)

input constant

reshape input

dot

slice
{[0:256, 0:128]}

reshape

slice
{[0:256, 128:256]}
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Insight: Silent errors are introduced by semantic changes, 
reflected in computational graphs

Expose silent errors without explicit signals

Know correct computation by having a baseline model to 
compare



Approach: Verify semantic equivalence
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Graph rewriting with equality saturation
Original graph G, transformed graph T, rewrite T so that it becomes equivalent to G
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T → T1 → T2 → T3 → T4 → G

So many ways to rewrite via semantic-preserving transformations in various 
different orders

Expression 1: G
Expression 2: T

T → T1 → T2 → T5 → T6 → ?
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T is equivalent to G?
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Equality saturation in computation graphs
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Outputs of original graph = Outputs of transformed graph ?
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]

Y = all-reduce(reshape(transpose(add(...



Rule generality and practicality
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Generic rule
dot(x, y) → ...

Specific rule
all-reduce(reshape(transpose(x))) → transpose(transpose(reshape(x)))

Solution
- Layout and distribution analysis of tensors with Datalog-style reasoning

- Compute relations between single device and distributed tensor and propagated through 
operator

- Rewrite rule generation
- Using predefined templates, reason about different layout transformations between single-

device and distributed tensor

Matches too many e-nodes

Covers too few cases



Graph scaling in large models
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Solution
- Graph partitioning with heuristics

- Divide at layer boundaries and predefined list of operators (e.g. softmax)

3 hours

E-graph larger than computational graph and grow at an 
exponential rate compared to the growth of computational 
graph



Lack of debugging support
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Solution
- Bug localization

- Create nodes with metadata referring to the source code file and line number
- Gives out list of unverified nodes with the metadata

hlo.py

attention.py

model.py
1
2
3
4

Manually going through 
the whole code space is 
tedious
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Localization

Code 
instrumentation

</>

LOG
Mapping 
relations

Original Transformed

Templates

Rules

Rewrite

Verified Unverified

Our system and workflow

AERIFY
- A framework that automatically verifies semantic equivalence of large models with equality 

saturation
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Preliminary results
- Built on top of egglog

- Applied to AWS transformers-neuronx inference library

- Detected 2 real-world silent errors with 12 semantic rules

Discussion
- Support fine-grained parallelisms with schedules (timing information)

- Extend to other frameworks (Deepspeed) and more models

- Integrate LLMs into debugging process

Preliminary results and discussion
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Machine learning models are increasingly complex and lead to silent errors
- These subtle errors cannot be detected with existing methods and cause model to have lower 

quality

Silent errors are reflected at the semantic level in generated IR graphs
- Rewrite transformed graph to make it equivalent to baseline graph

AERIFY automatically verifies computation graphs of large models with equality saturation 
Techniques include rewrite rule generation, tensor layout analysis and bug localization 

Conclusion
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