
Verifying Semantic Equivalence of
Large Models with Equality

Saturation
Kahfi S. Zulkifli*, Wenbo Qian*, Shaowei Zhu, Yuan Zhou, Zhen

Zhang, Chang Lou

EUROMLSYS 2025
1

Enabling large models through scaling that are prone
to silent errors

2

671 B

405 B

GPU 0

Single device

Data

Model

Don’t fit on one GPU Tensor Parallelism (TP)

GPU 0 GPU 1 GPU 2 GPU 3
Optimizer

Communication

Schedule

Scaling techniques are complex

Sharding

Wrong communication operations Wrong sharding Wrong calculation

Behavior not like single-device pipeline, loss value not
decreasing or garbage outputs

Model quality to drop

Prone to silent errors

A silent error in AWS Transformers Neuron, a
machine learning inference library

Goal: Slice key tensor from query-key-value matrix

3

Fix is simple, but difficult to detect

ML pipeline consists of multiple modules

Optimizer

Scheduling

Sharding

Backend

No explicit error signals

Bug causes incorrect model outputs

Crash Hang

--- attention.py
slice_lim = active_qkv.size[-1]//
 (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
 (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

+++ attention.py
slice_lim = active_qkv.size[-1]//
 (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
 (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=n_heads_tp*slice_lim)

*This bug is already fixed

Silent bugs are tricky since they are subtle

4

Our Position: Expose silent errors before
deployment

Our Position: Guarantee absence of errors in
pipelines

Testing frameworks

DeepXplore [SOSP ‘17], DeepTest [ICSE ‘18], Eagle [ICSE ‘22], NNSmith [ASPLOS ‘23], MLIRSmith [ASE
‘23], PolyJuice [OOPSLA ‘24]

Fault-tolerant to failures
Relies on explicit error signals

Runtime recovery

CheckFreq [FAST ‘21], Varuna [EuroSys ‘22], GEMINI [SOSP ‘23], Oobleck [SOSP ‘23], Bamboo [NSDI ‘23],
ReCycle [SOSP ‘24]

Detects many bugs
No guarantee of absence of bugs

Developers approach in debugging is ad-hoc
Examine intermediate tensor values in the entire huge code space manually

attention.py
print(...)
slice_lim = active_qkv.size[-1]//
 (n_heads_tp + 2 * n_kv_heads_tp)
print(...)
active_k = hlo.slice_along(active_qkv, -1,
 (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

print(...)

5

Optimizer

Scheduling

Sharding

Backend

Numerous amount of phases
Hard to differentiate correct and wrong tensors due to
floating-point round-off errors
Tedious to manually piece tensors on multiple devices to
match single on

--- attention.py
slice_lim = active_qkv.size[-1]//
 (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
 (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=0)

+++ attention.py
slice_lim = active_qkv.size[-1]//
 (n_heads_tp + 2 * n_kv_heads_tp)
active_k = hlo.slice_along(active_qkv, -1,
 (n_heads_tp+n_kv_heads_tp)*slice_lim,
start=n_heads_tp*slice_lim)

input constant

reshape input

dot

slice
{[0:256, 0:128]}

reshape

slice
{[0:256, 128:256]}

6

Insight: Silent errors are introduced by semantic changes,
reflected in computational graphs

Expose silent errors without explicit signals

Know correct computation by having a baseline model to
compare

Approach: Verify semantic equivalence

X

X1

X2

A1

A2

Y1

Y2

Y

X A Y

Simple Matrix Multiplication

Distributed Matrix Multiplication

7

...

...

768,768

768,768

4,12

4,12

reshape

reshape

dot add transpose reshape

...

...

reshape

reshape

dot add transpose reshape all-reduce

768,384

384,768

4,6

4,6

Graph rewriting with equality saturation
Original graph G, transformed graph T, rewrite T so that it becomes equivalent to G

8

T → T1 → T2 → T3 → T4 → G

So many ways to rewrite via semantic-preserving transformations in various
different orders

Expression 1: G
Expression 2: T

T → T1 → T2 → T5 → T6 → ?

E-graph E
G, T

Rewrite Rules

T is equivalent to G?
E-class

E-node

1

√𝑥
 → 𝑥−

1

2

1

x

√x

1

√𝑥
𝑥−

1
2

−
1

2

E3 E4

1

x

√x

1

√𝑥
𝑥−

1
2

−
1

2

E3 E4

E-graph

Equality saturation in computation graphs

9

Outputs of original graph = Outputs of transformed graph ?

X

X1

X2

A1

A2

Y1

Y2

Y

X A Y

Simple Matrix Multiplication

Distributed Matrix Multiplication

reshape...

reshape

dot add

...

transpose reshape

768,768

768,768

4,12

4,12

reshape

reshape

dot add transpose reshape all-reduce...

...

768,384

384,768

4,6

4,6

Y = X A Y = reshape(transpose(add(...

Y = X A, X = [X1, X2], A = [
 A1
A2

]

Y = all-reduce(reshape(transpose(add(...

Rule generality and practicality

10

Generic rule
dot(x, y) → ...

Specific rule
all-reduce(reshape(transpose(x))) → transpose(transpose(reshape(x)))

Solution
- Layout and distribution analysis of tensors with Datalog-style reasoning

- Compute relations between single device and distributed tensor and propagated through
operator

- Rewrite rule generation
- Using predefined templates, reason about different layout transformations between single-

device and distributed tensor

Matches too many e-nodes

Covers too few cases

Graph scaling in large models

11

Solution
- Graph partitioning with heuristics

- Divide at layer boundaries and predefined list of operators (e.g. softmax)

3 hours

E-graph larger than computational graph and grow at an
exponential rate compared to the growth of computational
graph

Lack of debugging support

12

Solution
- Bug localization

- Create nodes with metadata referring to the source code file and line number
- Gives out list of unverified nodes with the metadata

hlo.py

attention.py

model.py
1
2
3
4

Manually going through
the whole code space is
tedious

13

Localization

Code
instrumentation

</>

LOG
Mapping
relations

Original Transformed

Templates

Rules

Rewrite

Verified Unverified

Our system and workflow

AERIFY
- A framework that automatically verifies semantic equivalence of large models with equality

saturation

14

Preliminary results
- Built on top of egglog

- Applied to AWS transformers-neuronx inference library

- Detected 2 real-world silent errors with 12 semantic rules

Discussion
- Support fine-grained parallelisms with schedules (timing information)

- Extend to other frameworks (Deepspeed) and more models

- Integrate LLMs into debugging process

Preliminary results and discussion

15

Machine learning models are increasingly complex and lead to silent errors
- These subtle errors cannot be detected with existing methods and cause model to have lower

quality

Silent errors are reflected at the semantic level in generated IR graphs
- Rewrite transformed graph to make it equivalent to baseline graph

AERIFY automatically verifies computation graphs of large models with equality saturation
Techniques include rewrite rule generation, tensor layout analysis and bug localization

Conclusion

	Slide 1: Verifying Semantic Equivalence of Large Models with Equality Saturation
	Slide 2: Enabling large models through scaling that are prone to silent errors
	Slide 3: A silent error in AWS Transformers Neuron, a machine learning inference library
	Slide 4: Silent bugs are tricky since they are subtle
	Slide 5: Developers approach in debugging is ad-hoc
	Slide 6: Expose silent errors without explicit signals
	Slide 7: Approach: Verify semantic equivalence
	Slide 8: Graph rewriting with equality saturation
	Slide 9: Equality saturation in computation graphs
	Slide 10: Rule generality and practicality
	Slide 11: Graph scaling in large models
	Slide 12: Lack of debugging support
	Slide 13: Our system and workflow
	Slide 14: Preliminary results and discussion
	Slide 15: Conclusion

