
Demystifying and Checking

Silent Semantic Violations in Large

Distributed Systems

OSDI 2022

Chang Lou, Yuzhuo Jing, Peng Huang

Distributed systems provide rich semantics

2

ConfigurationsComponent

guaranteesClient APIs

tickTime, snapCount,
maxClientCnxns..

message ordering,

redundancy, ACID..

watch, kill, prune,
reconnect..

XML

JSON

YAML

Semantics encode various promises

3

Semantics encode various promises

3

promise 1: exactly-once

Client 1

1

Replicas

promise 2: n-way
redundancy

1

1

1

1

1

Semantics encode various promises

3

promise 1: exactly-once

Client 1

1

Replicas

promise 2: n-way
redundancy

1

1

1

1

1

Semantics encode various promises

3

promise 3: watch triggers

when updated

Client 2

promise 1: exactly-once

Client 1

1

Replicas

promise 2: n-way
redundancy

1

1

1

1

1
DATA_CHANGE_EVENT

2

Semantics encode various promises

3

promise 3: watch triggers

when updated

Client 2

promise 1: exactly-once

Client 1

1

When a promise is not a promise

4

When a promise is not a promise

4

Client 1

1
1

promise 1: exactly-once

Replicas

1

1

1

1

promise 2: n-way
redundancy

When a promise is not a promise

4

Client 1

1
1

promise 1: exactly-once

REPLICA

MISSING

Replicas

1

1

1

1

promise 2: n-way
redundancy

When a promise is not a promise

4

Client 1

1
1

promise 1: exactly-once

Client 2
promise 3: watch triggers

when updated
REPLICA

MISSING

Replicas

1

1

1

1

promise 2: n-way
redundancy

2

X

When a promise is not a promise

4

Client 1

1
1

promise 1: exactly-once

Client 2
promise 3: watch triggers

when updated
REPLICA

MISSING

5

Semantic violations

Replicas

1

1

1

1

promise 2: n-way
redundancy

2

X

Client 1

1
1

promise 1: exactly-once

Client 2
promise 3: watch triggers

when updated
REPLICA

MISSING

6

Existing work focus on failures w/ explicit errors

Client 1

Client 2

Replicas

TIMEOUT

SYSTEM_ERROR

EXCEPTION PROCESS

CRASH

ERROR LOG

7

Client 1

Client 2

Replicas

perf.

degrade

!

data loss

...
security

issue

!

corrupt

state

length < 0?

Silent semantic violations

REQ_SUCCESS

(actually failed
to process req)

Contributions

1. A study on 109 real-world silent semantic violations

• cases collected from 9 popular distributed systems

2. A detection solution: Oathkeeper

• automatically infer semantic rules from past failures

• enforce the rules at runtime to detect new failures

8

Study methodology

9

‣ Study on real-world incidents from nine distributed systems

• randomly sampled 747 user-reported failures in total

• confirmed 268 cases as silent semantic violations

• performed in-depth studies on 109 cases

System Category Lang. Sampled
Total Confirmed Studied

Cassandra Database Java 54 25 12
CephFS File System C++ 123 37 12

ElasticSearch Search Java 46 26 10
HBase Database Java 80 32 14
HDFS File System Java 52 22 14
Kafka Streaming Scala 92 39 13
Mesos Cluster Manager C++ 47 21 12

MongoDB Database C++ 151 30 10
ZooKeeper Coordination Java 102 36 12

Total / / 747 268 109

Major findings

10

‣ [Prevalence] How common are silent semantic violations in production?

‣ [Age of semantics] How long has the violated semantics existed?

‣ [Testing] Is semantics covered by tests and why did not expose issue?

‣ [Root cause] Can we find common bug patterns for static checking?

‣ [Timing] When do semantic violations happen?

‣ ...

‣ Myth: are silent semantic violations rare in production?

11

Prevalence

‣ Myth: are silent semantic violations rare in production?

12

‣ Finding 1: silent semantic violations are prevalent

• occupy 39% of cases for all types of failures

Prevalence

CS CF ES HB HF KF ME MG ZK
System

0
20
40
60
80

100

Pe
rc

en
t

Silent semantic Other

‣ Myth: are silent semantic violations rare in production?

12

‣ Finding 1: silent semantic violations are prevalent

• occupy 39% of cases for all types of failures

Prevalence

CS CF ES HB HF KF ME MG ZK
System

0
20
40
60
80

100

Pe
rc

en
t

Silent semantic Other …

invariant(!msg->empty());

invariant(msg->operation() == dbMsg);

invariant(msg->dataSize() >= sizeof(uint32_t));

DataView(msg->data()).write(flags);

…

MongoDB has lowest ratio

‣ Myth: violated semantics are fragile because they are new?

13

Age of semantics

‣ Myth: violated semantics are fragile because they are new?

14

‣ Finding 2: 68% of the studied failures violate old semantics

• "old" means semantics exist since the first major release of the system

• same semantics is repeatedly violated, e.g., ZooKeeper ephemeral node

Age of semantics

session start session end

create('/node1') node1 expires

‣ Myth: violated semantics are fragile because they are new?

15

‣ Finding 2: 68% of the studied failures violate old semantics

• "old" means semantics exist since the first major release of the system

• same semantics is repeatedly violated, e.g., ZooKeeper ephemeral node

Age of semantics

ephemeral node exists
since first major release 2008

2022ZK-4541

14 years

…

ZK-1208
ZK-2355

2011
201646 related

failures

session start session end

create('/node1')
violation:

 node1 not deleted!

‣ Myth: does violated semantics have poor testing?

16

Testing

‣ Myth: does violated semantics have poor testing?

17

‣ Finding 3: 73% of violated semantics are covered by existing tests

Testing

‣ Myth: does violated semantics have poor testing?

17

‣ Finding 3: 73% of violated semantics are covered by existing tests

Testing

• lack operations, arguments, timing to expose new violations

‣ Myth: does violated semantics have poor testing?

17

‣ Finding 3: 73% of violated semantics are covered by existing tests

Testing

appendFile() createSnapshot()

triggering conditions in existing test

+

• lack operations, arguments, timing to expose new violations

‣ Myth: does violated semantics have poor testing?

17

‣ Finding 3: 73% of violated semantics are covered by existing tests

Testing

appendFile() createSnapshot()

triggering conditions in existing test

+

snapshot.capture.openfiles = true

dfsAdmin.createEncryptionZone()

appendFile() createSnapshot()close()

triggering conditions for new violation

appendFile()appendFile()

+

+
+ +

• lack operations, arguments, timing to expose new violations

violation:

snapshot has viable size

‣ Myth: does violated semantics have poor testing?

17

‣ Finding 3: 73% of violated semantics are covered by existing tests

Testing

appendFile() createSnapshot()

triggering conditions in existing test

+

snapshot.capture.openfiles = true

dfsAdmin.createEncryptionZone()

appendFile() createSnapshot()close()

triggering conditions for new violation

appendFile()appendFile()

+

+
+ +

• existing efforts of writing tests do not effectively prevent future violations
• lack operations, arguments, timing to expose new violations

violation:

snapshot has viable size

‣ Myth: do same semantic violations have similar causes?

18

Root causes

‣ Myth: do same semantic violations have similar causes?

19

‣ Finding 4: root causes are diverse

• even for failures violating the same semantics, the causes are often different

Root causes

create ephemeral node

close session

node should be removed

semantics: ephemeral node

‣ Myth: do same semantic violations have similar causes?

20

Root causes

ZK-1208: race condition

create ephemeral node

close session

node not removed

thread 1
thread 2

1

‣ Finding 4: root causes are diverse

• even for failures violating the same semantics, the causes are often different

create ephemeral node

close session

node should be removed

semantics: ephemeral node

‣ Myth: do same semantic violations have similar causes?

21

Root causes

ZK-2355: buggy error handling

create ephemeral node

close session

node not removed

2

transient
network fault

syncWithLeader

‣ Finding 4: root causes are diverse

• even for failures violating the same semantics, the causes are often different

create ephemeral node

close session

node should be removed

semantics: ephemeral node

session
expirer

‣ Myth: do same semantic violations have similar causes?

22

Root causes

ZK-2774: skewed system time

create ephemeral node

close session

node not removed

3

system time
change

‣ Finding 4: root causes are diverse

• even for failures violating the same semantics, the causes are often different

create ephemeral node

close session

node should be removed

semantics: ephemeral node

‣ Myth: appending a check after each operation can solve problem

23

Timing of violation

‣ Myth: appending a check after each operation can solve problem

24

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)
X

‣ Myth: appending a check after each operation can solve problem

25

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)
X e.g. wrong response for query

> UPDATE cyclists SET name = 'Alex' WHERE id = 11;

> SELECT name FROM cyclists WHERE id = 11;

 Alice

‣ Myth: appending a check after each operation can solve problem

26

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)

long-lived
semantics

(67%)

X

X X X

(10%) (40%) (17%)

‣ Myth: appending a check after each operation can solve problem

27

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)

long-lived
semantics

(67%)

X

X X X

(10%) (40%) (17%)

HBASE-20588
> set_quota TYPE => SPACE, TABLE => 'TestTable',

 LIMIT => '2M', POLICY => NO_INSERTS

> put 'TestTable','1'

ERROR:
org.apache.hadoop.hbase.quotas.SpaceLimitingException

‣ Myth: appending a check after each operation can solve problem

28

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)

long-lived
semantics

(67%)

X

X X X

(10%) (40%) (17%)

new block creations

node failure event

blocks distributed

evenly

blocks reside

on same rack

HDFS-9083

‣ Myth: appending a check after each operation can solve problem

29

‣ Finding 5: 67% of cases violate long-lived semantics

Timing of violation

op1_start op1_end op2_start op2_end

short-lived

semantics

(33%)

long-lived
semantics

(67%)

X

X X X

(10%) (40%) (17%)

create ephemeral node

transient network fault

still existscheck ephemeral node

close session

ZK-2355

30
See the full list of findings in our paper

Other findings

‣ Finding 6: sanity checks are insufficient

• in 51% of the failures the buggy functions have some sanity checks

• only 9% cases can be potentially detected by adding proper sanity checks

‣ Finding 7: local vs. distributed semantics

‣ Finding 8: safety vs. liveness semantics

‣ Finding 9: user observability

‣ ...

Oathkeeper: a semantic violation detection tool

‣Motivating findings:

• the majority of studied failures violate old semantics

• the testing coverage of these semantics is decent

• the same semantics is repeatedly violated by different root causes

• many failures violate long-lived semantics

‣Key idea:

• extract essence from semantic failure regression tests and enforce it

31

…

Oathkeeper: a semantic violation detection tool

‣Motivating findings:

• the majority of studied failures violate old semantics

• the testing coverage of these semantics is decent

• the same semantics is repeatedly violated by different root causes

• many failures violate long-lived semantics

‣Key idea:

• extract essence from semantic failure regression tests and enforce it

32

…

Oathkeeper workflow

33

production

system

semantic
rules

buggy

trace

patched

trace

inference

engine verifier

1

2 3

Pre-production Production

verifier violation

alert

regression
test

4

instrument-lib

target

system

w/ patchw/o patch

instrument-lib

How to express semantics?

34
[1] Inferring and asserting distributed system invariants. Grant et al. ICSE'18.
[2] D3S: Debugging deployed distributed systems. Liu et al. NSDI'08. Oathkeeper

1 public void serialize(...) {

2 + logEvent(Type.Op,"serialize", ...);

 ...

 1 Map<Long, HashSet<String>> ephemerals;

 ...

71 void killSession(long session, long zxid) {

72 HashSet<String> list = ephemerals.remove(session);

73 + logEvent(Type.State, "ephemerals", "killSession",

74 + ephemerals, ...);

 ...

Dinv1

0 <= Sender <= N

∀ nodes i, j, NodeStatei = NodeStatej

D3S2

∀l ∈ LockID, sizeof(Owners(l)) <= 1

Predicates over key state variables:

Relationship among semantics-related events

(obtained from instrumentation)

Emitting semantic event traces

35

s↑(DataTree.ephemerals,..)

s↑(SessionTracker.sessionsById,..)
void testCreateAfterCloseShouldFail() {

 // open a connection
 ConnectRequest conReq = new ...;

 // close connection
 RequestHeader h = new ...;

 // create ephemeral znode (race)
 CreateRequest createReq = new...;

 assertEquals(1, zk.getChildren("/").size()); }

regression test
(ZK-1208)

s↑(DataTree.ephemerals,..)

s↑(SessionTracker.sessionsById,..)

op (DataNode::serialize,..)

...

...

event trace
(buggy)

event trace
(patched)

event{id=1,

event{id=2,

event{id=3,

event{id=4,

...

event{id=1,

event{id=2,

event{id=3,

... e1

e2

e3

e1

e2

[e1, e2, e3, e1, e2]

36

General semantic rule templates

Template Example
p⇒q decommission a datanode should trigger reconstruction
s↑⇒p when datanode changes, associated watcher notifies clients

s↑⇒k↑ after session disconnection, ephemeral node is removed
(s = c)⊕q deny new requests after connections reach maxClientCnxns

p + ∆t ⇒ q read-only server should not provide write access
s↑→q inserted data should expire after the TTL is reached.

p ⇒ ⊙(s ↑,k ↑) after snapshot renaming, either new snapshot creation and old
snapshot deletion both

full template list included in our tech report

‣ Relation examples summarized from study

Inference example: p ⇒ q

37

input [e1, e2, e3, e1, e2]

‣ Assume all rules hold and filter rules if counterexamples found

Inference example: p ⇒ q

37

input [e1, e2, e3, e1, e2]

‣ Assume all rules hold and filter rules if counterexamples found

<e1,e2> <e2,e1> <e1,e3> <e3,e1> <e2,e3> <e3,e2>
pre-scan

0 0 0 0 0 0

Inference example: p ⇒ q

37

scan

e1

e2

e3

e1

e2

1 0 1 0 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 1 0 0 1
0 1 1 0 1 0

input [e1, e2, e3, e1, e2]

‣ Assume all rules hold and filter rules if counterexamples found

<e1,e2> <e2,e1> <e1,e3> <e3,e1> <e2,e3> <e3,e2>
pre-scan

0 0 0 0 0 0

Inference example: p ⇒ q

37

scan

e1

e2

e3

e1

e2

1 0 1 0 0 0
0 1 1 0 1 0
0 1 0 1 0 1
1 0 1 0 0 1
0 1 1 0 1 0

post-scan e1 ⇒ e2 e3 ⇒ e1 e3 ⇒ e2

input [e1, e2, e3, e1, e2]

‣ Assume all rules hold and filter rules if counterexamples found

<e1,e2> <e2,e1> <e1,e3> <e3,e1> <e2,e3> <e3,e2>
pre-scan

0 0 0 0 0 0

Validation example: p ⇒ q

38

pre-scan

scan

e1

e2

e3

e1

post-scan

input

e1 ⇒ e2 e3 ⇒ e1 e3 ⇒ e2

1 0 0
0 0 0
0 1 1
1 0 1

e1 ⇒ e2 e3 ⇒ e2

[e1, e2, e3, e1]

‣ Only preserve rules that are violated in buggy trace

0 0 0

Validation against all tests

39

‣ False rules may still remain after validating against buggy trace

‣ The verifier further validates rules against traces from all tests

• mark rules without counterexamples as verified

rule 1
rule 2
rule 3

...
rule n

—

test 1

X

— — —

X

—

X

X
...

...

test 2 test 3 test 4 test m

s↑(DataTree.ephemerals,..)

s↑(SessionTracker.sessionsById,..)

e1

e2

imply

verified rules

Runtime detection

40

‣ In production, the target system is deployed
with verifier and instrumentation library

‣ Only rule-related functions are instrumented

‣ Deployed semantic rules periodically
validate against the runtime trace

• report alerts in the log with counterexamples

production

system

semantic
rules verifier violation

alert

instrument-lib

Runtime detection

41

production

system

semantic
rules verifier violation

alert

instrument-lib ‣ In production, the target system is deployed
with verifier and instrumentation library

‣ Only rule-related functions are instrumented

‣ Deployed semantic rules periodically
validate against the runtime trace

• report alerts in the log with counterexamples

[...]ASSERT FAIL! #220

Invariant{template=oathkeeper.runtime.template.StateUpdateImplyStateUpdateTemplate,

 context=Context{

 left=StateUpdateEvent{state='org.apache.zookeeper.server.DataTree.ephemerals'..},

 right=StateUpdateEvent{state='org.apache.zookeeper.server.SessionTracker.sessionsById'..}

Conflict with trace: [

 ...

Optimizations

42

‣ "Survivor" mode for validation

• prioritize running related tests to

invalidate rules more efficiently

• reduce validation processing time

rule 1
rule 2
rule 3

...
rule n

—

test 4

X

— — — —

...

...

test 2 test 3 test 1 test m

X

X

expired newly-created

reuse

survivor mode ring buffer for tracer

‣ Ring buffer tracer for runtime

• reuse expired event objects

• effectively lower runtime overhead

Evaluation

‣ Integrated Oathkeeper with ZooKeeper, HDFS and Kafka

‣ We try to answer questions such as

• can Oathkeeper check new violations from past failures?

• is runtime checking accurate?

• how fast can tool generate rules?

• is runtime checking lightweight?

43

Extracted semantic rules

44

‣ We select old semantic failures and regression tests to reproduce

• extracted 285 rules for ZooKeeper, 1,209 rules for HDFS, and 150 rules for Kafka

ZooKeeper HDFS Kafka

ZK-1046 HDFS-8950 KAFKA-9144
ZK-1208 HDFS-9204 KAFKA-9491
ZK-1412 HDFS-10192 KAFKA-9666
ZK-1573 HDFS-10536 KAFKA-9752
ZK-1754 HDFS-10968 KAFKA-9891
ZK-1755 HDFS-11960 KAFKA-9921
ZK-2680 HDFS-12862 KAFKA-10001
ZK-2797 HDFS-13120 KAFKA-10545

HDFS-13192
HDFS-14504

Detecting real-world failures

45

JIRA Id Violated Semantics Rules from
ZK-1496 ephemeral node should be deleted after session expired ZK-1208

ZK-1667 watcher should return correct event when client reconnected MISS

ZK-3546 container node should be deleted after children all removed ZK-2705

HDFS-14699 failed block need to be reconstructed HDFS-10968

HDFS-14317 edit log rolling should be activated periodically HDFS-10536

HDFS-14633 file rename should respect storageType quota HDFS-14504

KAFKA-12426 partition topic ID should be persisted into metadata file KAFKA-10545

‣ Oathkeeper detects violations for 6 of 7 evaluated cases

• use regression tests 9–34 months earlier than new failures

• baseline checker based on Dinv1 only detects 1 case

[1] Inferring and asserting distributed system invariants. Grant et al. ICSE'18.

False positive

46

0%

3%

6%

9%

12%

false postive

ZooKeeper
HDFS
Kafka

‣ Generated rules incur 4-12% false positive ratios

• greatly benefits from the validation steps

• can be further reduced by adding profile runs or a dynamic ban mechanism

Offline performance

47

0
2000
4000
6000
8000

Ti
m

e
(s

)

0
30
60
90

Ti
m

e
(s

)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Failure Id

0100200300400500

Ti
m

e
(s

)

Verify Infer GenTrace

‣ Trace generation and inference usually take up to minutes

‣ Validation is most time-consuming part

• survivor mode can reduce validation time by 38%

Phase Median time (sec)

trace generation 153.5

inference 6.5
validation 2,196

Runtime overhead

48

Throughput comparison (op/sec)

1

100

10,000

ZooKeeper HDFS Kafka

30,183.15

172.06
416.1

30,759.49

174.55
418.27

w/o Oathkeeper
w/ Oathkeeper

‣ Oathkeeper adds ~1.27% overhead on throughput

• overhead is mainly from the added instrumentation to emit traces

• ring buffer optimization eliminates overhead by frequent GC

Conclusion

‣ Semantics in distributed systems can be violated silently

‣ Our study reveals interesting findings

• same old semantics can be violated repeatedly in different scenarios

• long-lived semantics require continuous monitoring

‣ Oathkeeper: a runtime detection tool

• infer semantic rules from past failures to detect new violations

49
https://github.com/OrderLab/OathKeeper

