
CS4740 
CLOUD COMPUTING

Distributed System Foundation

Prof. Chang Lou, UVA CS, Spring 2024

1



AGENDA

– Challenges, Goals, and Approaches for DS
– Example: Web Service Architecture

2



Why building cloud systems is 
hard?

3



STARBUCKS

– Imagine you are operating a Starbucks

4



STARBUCKS

5



Now imagine 1000x customers?
STARBUCKS

6



CHALLENGE 1: EVER-GROWING LOAD

– Data is big. Users are many. 
Requests are even more. 

– Google get 8.5 billion searches 
per day.

7



SCALE-UP?

1,698 × 1,920

8



SCALE-UP?

1,698 × 1,920

– You can always add more 
compute resources—such as 
CPU, memory, and disk 
capacity. 

– But no single machine can 
handle the ever-growing load.

9



APPROACH 1: SCALE-OUT (SHARDING)

10



GOAL 1: SCALABILITY

– The more resource you add, the 
more requests you can serve. 

– But never hope for perfect 
scalability
– add one machine, increase your 

capacity proportionally forever?

11



SAMPLE SCALABILITY CURVES

12



CHALLENGE 2: AT SCALE, FAILURES ARE INEVITABLE

13



GOAL 2: FAULT TOLERANCE

– Goal is to hide failures as much as possible to provide a service that 
e.g., finishes the computation fast despite failures, stores some data 
reliably despite failures, … 

– Fault tolerance subsumes:
– Availability: the service/data continues to be operational despite failures. 
– Durability: some data or updates that have been acknowledged by the system will 

persist despite failures and will eventually become available. 

14



GOAL 2: FAULT TOLERANCE

Availability: I expect someone will 
always take my order ..

Durability: once I placed my order, I 
expect nobody ask me again..

15



APPROACH 2: REPLICATION

16



CHALLENGE 3: CONSISTENCY

Three cups of 
Cappuccino 

please

17



CHALLENGE 3: CONSISTENCY

She ordered 
three cups of 
Cappuccino

got itgot it

18



CHALLENGE 3: CONSISTENCY

Change to 
Espressogot it(didn't hear)

Wait, change 
to Espresso

19



CHALLENGE 3: CONSISTENCY

Your 
Espresso is 

ready.

Your 
Cappuccino 

is ready.
???

20



GOAL 3: CONSISTENCY GUARANTEE

– Distributed systems try to create an illusion that users are using one 
single powerful machine
– They guarantee that every replica has the same view of data 

21



APPROACH 3: PROTOCOLS

– The general approach is to develop rigorous protocols, which we will 
generically call agreement protocols, that allow workers and replicas to 
coordinate in a consistent way despite failures. 

– Agreement protocols often rely on the notion of majorities: as long as a 
majority agrees on a value, the idea is that it can be safe to continue 
making that action. 

– Different protocols exist for different consistency challenges, and often 
the protocols can be composed to address bigger, more realistic 
challenges.

22



AGENDA

– Challenges, Goals, and Approaches for DS
– Example: Web Service Architecture

23



BASIC ARCHITECTURE

– Web front end (FE), database server (DB), 
network. FE is stateless, all state in DB.

– Properties:
– Performance?
– Fault tolerance?
– Scalability?
– Semantics?

Web FE

DB

Network

24



BASIC ARCHITECTURE

– Web front end (FE), database server (DB), 
network. FE is stateless, all state in DB.

– Properties:
– Performance: poor
– Fault tolerance: poor
– Scalability: poor
– Semantics (consistency): great!
–

Web FE

DB

Network

Let's improve performance first!

25



GOAL: REDUCE LATENCY

– Performance
– Read?
– Write?

– Fault tolerance
– Availability?
– Durability?

– Scalability?
– Semantics (consistency)?

Web FE

DB

Network

Cache

26



GOAL: REDUCE LATENCY

– Read latency: improved if working set fits in 
memory. 

– Durability: depends on cache: good for 
write-through $$, poor for write-back $$. 

– Write latency is opposite: good with write-
back, poor with write-through. 

– Consistency: good: you have 1 FE 
accesses DB, going through 1 $$, so 
behavior is equivalent to single machine.

Web FE

DB

Network

Cache

Let’s deal with scalability, first on FE and later on DB.27



GOAL: SCALE OUT THE FE

– Launch multiple FEs. Each has its own 
local cache, which we’ll assume is write-
through.

– Properties:
– Performance?
– Fault tolerance?
– Scalability?
– Semantics?

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

28



GOAL: SCALE OUT THE FE

– Launch identical replicas of the DB 
server, each with its disk. All replicas hold 
all data, writes go to all.

– Properties:
– Performance?
– Fault tolerance?
– Scalability?
– Semantics?

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

DB DB

29



GOAL: FAULT TOLERANCE FOR DB

– Writes now need to propagate to all replicas. 
So they are much slower! Even if done in 
parallel, because FE now needs to wait for 
the slowest of DB replicas to commit 
(assuming write-through cache, which offers 
the best durability).

– All replicas must see all writes IN THE SAME 
ORDER! If order is exchanged, they can 
quickly go “out of sync”! So lots more 
consistency issues.

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

DB DB

30



GOAL: FAULT TOLERANCE FOR DB

– There are also availability issues. If you require all 
the replicas to be available when a write is satisfied 
(for durability), availability goes DOWN! 
Consensus protocols, which work on a majority of 
replicas, address this.

– Another consistency challenge: how are reads 
handled? If you read from one replica, which one 
should you read given that updates to the item 
you’re interested in might be in flight as you 
attempt to read it? We’ll address these issues in 
future lectures by structuring the replica set.

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

DB DB

Let’s deal with DB scalability.

31



LAST GOAL: SCALE OUT THE DB

– Partition the database into multiple shards, 
replicate each multiple times for fault 
tolerance. Requests for different shards go 
to different replica groups.

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

DB DBDBDB DBDB DBDB

32



LAST GOAL: SCALE OUT THE DB

– New challenges that arise:
– How should data be sharded? Based on users, on 

some property of the data?
– How should different partitions get assigned to 

replica groups? How do clients know which servers 
serve/store which shards?

– If the FE wants to write/read multiple entries in the 
DB, how can it do that atomically if they span 
multiple shards? If different replica groups need to 
coordinate to implement atomic updates across 
shards, won’t that hinder scalability?

Web FE

DB

Network

Web FE Web FE

CacheCache Cache

DB DBDBDB DBDB DBDB

33



TAKEAWAYS

34

– Scalability, fault tolerance, consistency, and performance are difficult goals to achieve 
together.

– Solving them requires rigorous protocols and system architectures.

– This class teaches such protocols and architectures, plus how they are incorporated in 
real systems.

– Next class: MapReduce



ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON INFLUENTIAL DISTRIBUTED SYSTEM COURSES INCLUDING UIUC 
DISTRIBUTED SYSTEMS CS425, MIT 6.5840 DISTRIBUTED SYSTEMS AND COLUMBIA DISTRIBUTED SYSTEMS 

FUNDAMENTALS. MANY THANKS TO PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS AND PROF. ROXANA GEAMBASU FOR 
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.


