CLOUD COMPUTING

Reliability

Prof. Chang Lou, UVA CS, Spring 2024

AGENDA

— What is reliablility
— Motivation for reliability research

— Software techniques to improve cloud reliability
— Testing
— Program analysis
— Formal methods

— End of semester concluding remarks :)

WHAT IS RELIABILITY

— What are some common qualities we measure on systems?

WHAT IS RELIABILITY

— Reliability is not

— Performance: make systems faster

— Usability: make systems more user-friendly

— Security: make systems safer against intrusions

— Cost-effectiveness: make systems more affordable
— Reliability is

— the system's ability to consistently perform its intended function without failure over
a given period.

WHAT IS RELIABILITY

— Reliability

— measured with the probability that a system operates without failure in a given
period of time.

— how to compute probability: Mean Time Between Failures (MTBF)

B NumofBreakdowns
MTBF E[uptime]

Reliability = 1 —

CLOUD FAILURES

— Cloud failures are prevalent

Sorry, something went wrong.

We're working on it and we'll get it fixed as soon as we can.

Go Back

slack

/\ Server Error

Sorry! Something went wrong, but we're looking into it.

If the problem continues, please check our Status page for updates.

Twitter Is over capacity.

Please wait a moment and try again. For more information, check out Twitter Status.

Bahasa Indonesia Bahasa Melayu Deutsch

Google

404. That's an error.

The requested URL was not found on this server. That's all

we know

English Espanol ipino rancai

aliano Nederlands Porfugués Turkge

CLOUD FAILURES

— Bad user experience

B Sgt. Brink 2 Follow Joe Brown &
LASDBrink @joemfbrown

ffFacebook is not a Law Enforcement issue, 'm sitting here in the dark in my toddler’s room
please don't call us about it being down, we because the light is controlled by @Google Home.
don't know when FB will be back up! Rethinking... a lot right now.

W SpartanWire
- SpartanWire

2+ Follow

Reddit when youtube's been

d for 5 mi Everybody right now.
owWn Toro min #AWS #awscloud #awsoutage #awsdown #S3

#AWSs3 #Amazon

CLOUD FAILURES

— Huge economic loss and service unavailability

Amazon ‘missed out on $34m in sales
during internet outage’

The e-commerce giant generates $9,615 in sales per second - but not when it’s website is down

Microsoft's MFA is so strong, it
locked out users tor 8 hours

Ben Chapman e« Tuesday 08 June 202116:54 |IIC mmmmm ts @ o 0 @
23 3 difficult days for Rackspace Cloud Load
s Balancers Millions online hit by Microsoft 365 outages

After almost 24 hours of technical :l:oes'::;g%“;;’ fiz';"é:?‘i Er‘; ﬂ%";’(ﬂ
difficulties, Facebook is back

outage
Facebook blamed the issue on a “server configuration change.”

Zack Whittaker @zackwhittaker / 4 months ago E] Commen t

CLOUD FAILURES

— Cloud systems fail due to different root causes

120 -

100 -

80 -

60 -

40 -

20 -

Downtime distribution (in hours) across root causes

O] O < (o

AN} v« « AN

@ A O @ Q@ O o Xy & A
FECELFLLLFL I
RN AR M e IR G A e I I
N \z{&b ¥ ¥ © R ée} ‘OQO\)&‘S\ @

*H. S. Gunawi et al., Why Does the Cloud Stop Computing? Lessons from Hundreds of Service Outages, In Proceedings of the 6th ACM Symposium on Cloud Computing (SOCC ‘16), October 2016.

CLOUD FAILURES

— .. sometimes very weird root causes

TECH IECHNOLOGY GOOGLE FipeR Google reinforces undersea cables after
Google Fiber Shot Down By 'Bored' Hunters chark bites

'Bored' Hunters Shoot Down Google Fiber

= Sharks have been biting down on fibre optic cables under the
By Bianca Bosker Pacific, possibly confused by electrical signals that resemble fish

Nov 22, 2010, 05:12 AM EST | Updated May 25, 2011, 05:50 PM EDT

e

_—
A

A
s |
,-AQ -
- '*. ‘
\
: ¥ - .
~ ’-I

=

)

[-
‘ N B

a -

—
o ——
\“‘ -

—
'..1
.

-,

‘%H

REMAINING PART OF LECTURE

— We focus on solutions for software bugs

TACKLING SOFTWARE ISSUES IN DIFFERENT WAYS

Bug finding

Fuzz testing
Static analysis

Dynamic analysis

Can we automatically
find bugs in the codes?

Formal methods

Model checking
Symbolic execution

Theorem proving

Can we prove the
codes are bug-free?

Runtime

Failure detection
Failure diagnosis

Failure recovery

Can we better handle
fallures at runtime?

Testing (fuzzy)

TESTING

func TestPersist12C(t *testing.T) {
servers := 3§
cfg := make_config(t, servers,
defer cfg.cleanup()

unreliable: false,

snapshot: false)

cfg.begin(description: "Test (2C): basic persistence")

cfg.one(cmd: 11, servers, retry:t

// crash and re-start all

for 1 := 0; i < servers; i++ {
cfg.startl1(i, cfg.applier)

}

for 1 := 0; 1 < servers; i++ {
cfg.disconnect (i)
cfg.connect(i)

cfg.one(cmd: 12, servers, retry:t
leaderl := cfg.checkOnelLeader()
cfg.disconnect(leaderl)

cfg.startl(leaderl, cfg.applier)

cfg.connect(leaderl)

cfg.one(cmd: 13, servers, retry:t

rue)

rue)

rue)

TESTING

func TestPersist12C(t *testing.T) {
servers := 3§
cfg := make_config(t, servers, unreliable: false, snapshot: false)

set input

defer cfg.cleanup()

cfg.begin(description: "Test (2C): basic persistence") O.ne(-l 1)
disconnect(1)
cfg.one(cmd: 11, servers, retry: true) COnneCt(1)
// crash and re-start all d|SCOnneCt(2)
for 1 := 0; i < servers; i++ {
cfg.startl(i, cfg.applier)
}
for i := 0; i < servers; i++ { CheCk Execute
cfg.disconnect (i) <
“Fo. commect (i) result program
}

cfg.one(cmd: 12, servers, retry: true)

TESTING

search space

func TestPersist12C(t *testing.T) { ‘
servers := 3§ -
cfg := make_config(t, servers, unreliable: false, snapshot: false) Set Inlet
defer cfg.cleanup()
cfg.begin(description: "Test (2C): basic persistence") One(1 1)
disconnect(1)
cfg.one(cmd: 11, servers, retry: true) COnneCt(1)
// crash and re-start all Test passed does that diSCOnneCt(Z)..
for 1 := 0; i < servers; i++ { 4
cfg.startl(i, cfg.applier) mean your program
}
for 1 := 0; i < servers; i++ { has no bug? Check Execute
cfg.disconnect (i) reSUIt < program

cfg.connect(i)

} tests only cover a small
cfg.one(cmd: 12, servers, retry: true) pOrtIOn Of pOSS|b|I|t|eS|

FUZZ TESTING

— Goal:
— To find program inputs that reveal a bug

— Approach:
IF SOMEONE-WOULD WRITE

— Generate inputs randomly until program reports errors =MY TESTCASES FOR ME
N\

L=
-’
-
\
.

y

£
//
ry
.

THAT'D BE GREAT.

FUZZ TESTING EXAMPLE

— Standard HTTP GET request
— § GET /index.html HTTP/1.1

—Fuzzing HTTP GET request
— § AAAAAA...AAAA /index.html HTTP/1.1
— § GET //llllindex.html HTTP/1.1
— § GET %n%n%n%n%n%n.ntml HTTP/1.1
— § GET /AAAAAAAAAAAAA htmI HTTP/1.1
— § GET /index. htmIHTTTTTTTTTTTTTP/1.1

FUZZ TESTING EXAMPLE 2: OPEN-SOURCE SOFTWARE

— Many open-sourced fuzzer implementation
— e.g., Atheris: A Coverage-Guided, Native Python Fuzzer from Google

Maya: Datetimes for Humans™
& Watch 69 ~ % Fork 199 - Y7 Star 3.4k -

() Continuous Integration and Deployment ' failing

Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different
systems. This library exists to make the simple things much easier, while admitting that time is an illusion
(timezones doubly so).

Datetimes should be interacted with via an API written for humans.

Maya is mostly built around the headaches and use-cases around parsing datetime data from websites.

FUZZ TESTING EXAMPLE 2: OPEN-SOURCE SOFTWARE

— Many open-sourced fuzzer implementation
— e.g., Atheris: A Coverage-Guided, Native Python Fuzzer from Google

>>> scraped = 2016-12-16
18:23:45.423992+00:00'
>>> maya.parse(scraped).datetimel()

>>> maya.parse('may15,2021').datetime()

>
datetime.datetime(2016, 12, 16, 13, 23, 45, datetime.datetime(2022, 5, 15, 0, 0, tzinfo=)

423992)

Maya: Python Applying fuzzer to find a
Datetimes Library triggering input

FUZZ TESTING EXAMPLE

— How to fuzz testing a distributed system?

— Very challenging, especially considering all concurrency and non-
determinism

— here we show an intuitive approach

FUZZ TESTING

func TestPersist12C(t *testing.T) {
servers := 3§
cfg := make_config(t, servers, unreliable:

defer cfg.cleanup()

cfg.begin(description: "Test (2C): basic pe

cfg.one(cmd: 11, servers, retry: true)

one(11)
one(12)
disconnect(1)
connect(1)
disconnect(2)

one(11)
disconnect
disconnect

// crash and re-start all
for 1 := 0; i < servers; i++ {
cfg.startl(i, cfg.applier)

}

for i := 0; i < servers; i++ {
cfg.disconnect (i)
cfg.connect (i)

}

cfg.one(cmd: 12, servers, retry: true)

one(11)
disconnect(1)
connect(1)
disconnect(2)..

initial seed

~_ | /

set input

collect &
analyze

> |7
Check Execute
result ° program

FUZZ TESTI NG search space

use as new seed!
func TestPersist12C(t *testing.T) {
servers := 3 One(1 1)

cfg := make_config(t, servers, unreliable:
defer cfg.cleanup() One(1 2) One(1 1)

disconnect(1) disconnect(1)
cfg.begin(description: "Test (2C): basic p ConneCt(1) dISCOnnect(Z)
cfg.one(cmd: 11, servers, retry: true) dlSCOﬂﬂGCt(Z) t g ?

mutate
// crash and re-start all \

o e one(11) \

o 20 1< s docomiee® | e Check Execute
cfg. connect (1) disconnect(2).. result program

} initial seed

cfg.one(cmd: 12, servers, retry: true)

FUZZ TESTING

— Strength

— low cost, easy-to-implement
— practical for large programs

— Weakness
— randomness
— complexity of structured input
— wasted efforts on rejected input

Software Under Test

Error Detector

I'm not ||sten|ng'

Static analysis

STATIC ANALYSIS

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

rf.mu.Lock()
log.Printf("Worker%d: receive %v \n", rf.me, args)

rf.CheckBehind(args.Term)

reply.Term = rf.currentTerm

if (rf.votedFor == -1 || rf.votedFor == args.CandidateId) && (args.LastLogTerm > rf.log[len(rf.log)-1].Term | |
(args.LastLogTerm == rf.log[len(rf.log)-1].Term && args.LastLogIndex >= len(rf.log)-1)) {
log.Printf ("Worker%d: grant true %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

rf.votedFor = args.CandidateId
rf.currentTerm = args.Term - - .
rf.ifLeaderAlive = true anythlng WrOng Wlth thIS
rf.recentVoted = true ’?
log.Printf ("Worker%d: become follower\n", rf.me) (j
rf.role = Follower , CO e)

WHAT Ifl_illllll YOU

rf.persist() E' \

N\
\

reply.VoteGranted = true
return

}
reply.VoteGranted = false

log.Printf ("Worker%d: grant false %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

fllA'I' YOU NEED T0 USE THE
STATIC GODE ANALYSIS

rf.mu.Unlock()

STATIC ANALYSIS

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

rf.mu.Lock()
log.Printf("Worker%d: receive %v \n", rf.me, args)

rf.CheckBehind(args.Term)

reply.Term = rf.currentTerm
if (rf.votedFor == -1 || rf.votedFor == args.CandidateId) && (args.LastLogTerm > rf.log[len(rf.log)-1].Term | |

(args.LastLogTerm == rf.log[len(rf.log)-1].Term && args.LastLogIndex >= len(rf.log)-1)) {
log.Printf ("Worker%d: grant true %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

rf.votedFor = args.CandidateId

lock()

l

it (...)

rf.currentTerm = args.Term
rf.ifl.eaderAlive = true
rf.recentVoted = true

vote(fals

e)

log.Printf ("Worker%d: become follower\n", rf.me)
rf.role = Follower

rf.persist()

reply.VoteGranted = :V nO UnIOCk() before return!

return

}
reply.VoteGranted = false

log.Printf ("Worker%d: grant false %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

rf.mu.Unlock()

} static analysis uses "patterns" to fine bugs

l

unlock()

l

return

vote(true)

return

ANOTHER EXAMPLE

can X be zero?

-

A~
1

i
AN S~
> S~ 1

n.u,.,.,mu\x > LO
— XO 2 oo

1S o = N
X >N =

~

(exit)

> v—
(@) —i
— e (@) _ ~ |
I —> I > |l A > > Y
ot >

-

A~
1

|
AN S~
>~ |

n.u,.,.,(e\x > LO
— XO 2 oo

1S o = N
X >N = -~

ANOTHER EXAMPLE

ANOTHER EXAMPLE

x = 10
1 X:NZ
y = X
I X:NZ, y:NZ
z =0
I X:NZ, y:NZ, z:Z X:NZ, y:MZ, z:MZ X:NZ, y:MZ, z:MZ
LY x:NZ, v:NZ, 222 x:NZ,v:MZ, 22MZ x:NZ, y:MZ, :MZ
x =x/y
v X:NZ, y:NZ, z:Z X:NZ, y:MZ, z:MZ X:NZ, y:MZ, z.MZ
=y - T
- x:NZ, v:MZ 22 x:NZ y:MZ 2MZ x:NZ, y:MZ, 2:MZ
Z ¥ 5
v X:NZ,y:MZ, z:NZ x:NZ, y:MZ, z:N/ X:NZ, y:MZ, z:NZ

SOUNDNESS, COMPLETENESS

property

Soundness “Sound for reporting correctness”
Analysis says no bugs — No bugs

or equivalently
There is a bug — Analysis finds a bug

Completeness “Complete for reporting correctness”
No bugs — Analysis says no bugs

Recall: A — B is equivalentto (—=B) —= (=A)

SOUNDNESS, COMPLETENESS

Sound Analysis

IN practice, often settle for
unsound and incomplete
analysis

STATIC ANALYSIS

— Strength

— scalability
— fault localization

— Weakness

— require specific bug pattern (false negative)
— lack runtime information (false positive)

Model checking

TESTING IS USEFUL, HOWEVER..

— “Testing can only show the presence of errors, not their absence.”

Edsger Dijkstra
1930-2002

MOTIVATION EXAMPLE

— Many techniques focus on checking implementation, not design
— What if the system design is incorrect?

— Example: Microwave oven
— Start: “start” button pressed
— Close: is door closed?
— Heat: microwave active
— Error: error state

— Safety property: the oven doesn’t heat up until the door is closed
— (-Heat) U Close

MOTIVATION EXAMPLE

~ Start
Close
Heat
~ Error

DEMO: CHECK CHANG'S MICROWAVE OVEN WITH TLA+

MODEL CHECKING PROBLEM

— Given state transition graph M
— Let ¢ be specification (a temporal logic formula)

— Find all states s of M such that for all execution sequences x starting
froms, X,0= ¢

MODEL CHECKING STEPS

— 1. Write a specification of the system in a formal specification language
(think math).

— 2. Specify correctness properties as invariants on states or behaviors.

— 3. Use a model checker to exhaustively check that
every state/behavior of the system, within a bounded
range of configurations, satisfies your invariants.

— e.g., TLA+ (by Leslie Lamport)

MODEL CHECKING RAFT

https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Ratft.tla

tandard-raft / Raft.tla

Blame 653 lines (582 loc) - 26.3 KB

/\ UNCHANGED <<acked, leaderVars, logVars, restartCtr>>

* ACTION: AppendEntries —-———H———1—m—m——wmmm-—nm1omo-—"—"—-—-—-
* Leader i sends j an AppendEntries request containing up to 1 entry.
* While implementations may want to send more than 1 at a time, this spec uses
* just 1 because it minimizes atomic regions without loss of generality.
AppendEntries(i, j) ==
/\ 1 /=]
/\ state[i] = Leader
/\ pendingResponse[i]l [j] = FALSE \x not already waiting for a response
/\ LET prevLogIndex == nextIndex[i] [j] - 1
prevLogTerm == IF prevLogIndex > @ THEN
log[i] [prevLogIndex].term
ELSE
0
\x Send up to 1 entry, constrained by the end of the loqg.
lastEntry == Min({Len(log[i]), nextIndex[i] [j]})
entries == SubSeq(log[i], nextIndex[il[j], lastEntry)
IN
/\ pendingResponse' = [pendingResponse EXCEPT !'[i] [j] = TRUE]
/\ Send([mtype AppendEntriesRequest,
mterm currentTerm[i],
mprevLogIndex prevLogIndex,
mprevLogTerm prevLogTerm,
mentries entries,
mcommitIndex Min({commitIndex[i], lastEntry}),

msource i,

mdest jl)
285 UNCHANGED <<servervVars

candidateVars. nextIndex. matchIndex. loaVars. auxVars>>

Concluding remarks

IT HAS BEEN A LONG JOURNEY..

Agreement
MapReduce RPC J
| oPC GFS o
Transaction Virtualization
ZooKeeper
Time and Coordination Consensus (e.g., Raft) ML system

- L Inf L
Isolation Consistency arge fnira Reliability

e Y
Cloud and Distributed System Fundamentals Real-world Cloud Special Topics

43

WE BUILT TWO CLOUD SYSTEMS..

Raft Protocol Summary

How MapReduce Works?

—
][
> o
||||/ 4
— I
Map() Shuffle Reduce()

MapReduce

Followers

* Respond to RPCs from candidates and leaders.

* Convert to candidate if election timeout elapses without
either:
* Receiving valid AppendEntries RPC, or
* Granting vote to candidate

Candidates

* Increment currentTerm, vote for self
* Reset election timeout
* Send RequestVote RPCs to all other servers, wait for either:
* Votes received from majority of servers: become leader
* AppendEntries RPC received from new leader: step
down
* Election timeout elapses without election resolution:
increment term, start new election
* Discover higher term: step down

Leaders

* Initialize nextIndex for each to last log index + 1

* Send initial empty AppendEntries RPCs (heartbeat) to each
follower; repeat during idle periods to prevent election
timeouts

* Accept commands from clients, append new entries to local
log

* Whenever last log index = nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

* If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

* Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

* Step down if currentTerm changes

Persistent State

Each server persists the following to stable storage
synchronously before responding to RPCs:

currentTerm latest term server has seen (initialized to 0
on first boot)

votedFor candidateld that received vote in current
term (or null if none)

log|] log entries

term term when entry was received by leader
index position of entry in the log
command command for state machine

RequestVote RPC

Invoked by candidates to gather votes.

Arguments:
candidateld candidate requestj e

term candidate's term

lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry
Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:

1. Ifterm > currentTerm, currentTerm «— term
(step down if leader or candidate)

2. Ifterm == currentTerm, votedFor is null or candidateld,
and candidate's log is at least as complete as local log,
grant vote and reset election timeout

AppendEntries RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:

term leader's term

leaderld so follower can redirect clients

prevLogIndex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries|] log entries to store (empty for heartbeat)

commitIndex last entry known to be committed

Results:

term currentTerm, for leader to update itself

success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:

Return if term < currentTerm

If term > currentTerm, currentTerm «— term

If candidate or leader, step down

Reset election timeout

Return failure if log doesn’t contain an entry at
prevLogIndex whose term matches prevLogTerm

If existing entries conflict with new entries, delete all
existing entries starting with first conflicting entry
Append any new entries not already in the log

8. Advance state machine with newly committed entries

bW

&

=

Ralft

44

PLAYED WITH COMMERCIAL CLOUD SYSTEMS..

1 leao!e,r election“ |eao(er elect?on |eaoler election
: nats opp
Application (file name, chunk index) GFS master = /foo/bar QPP oee ZooKeeper
GFS client "| File namespace chunk 2¢f0
(chunk handle, /
chunkzlocatlons) fLegend:
Data messages
— g
3 Instructions to chunkserver ‘ \ > Control messages
(chunk handle, byte range) CLmnESerVerState |
GFS chunkserver GFS chunkserver |
CHEnE data4 Linux file system Linux file system

99 - 90 -

Figure 1: GFS Architecture

Google File System ZooKeeper (Lab Day I, Lab Day Il)

45

GAMES..

i
| 4
‘4

)
v

Consensus
(w/ malicious peers)

Green cup, Red cup

N M ek N < . »

Vel W - 3 s Y ? ;.‘ - :J.""‘ % : -

% - My w7 o =

7, T S it ¢ L ¥o3/ 03

2 ' -

89 Ths M A = :

2 2 ‘ ‘

. (g S Lol e

2 Al 7 J NN 40

N il TS it 1y RIS

¥ > 2T s, (oA

3 LU BT L e

¥, ‘J‘::" ‘:: ."'"'"‘: ‘Ld

e v 2 2% ol . o

J - % 1> X .
Do e :

res w/ Donut Gandalf

46

% --a:$~ =1

PG failu

DISCUSSION WITH CLOUD EXPERTS..

"Managing Cloud Health with AlIOps" "Block Store over the Cloud"
(Microsoft Azure) (Alibaba Cloud)

47

What if I'd like to learn more

FUTURE STUDY

— 1. Online resources
— cloud/distributed system course, e.g., MIT 6.824
— follow up latest progress on top system conferences, e.g., SOSP/OSDI

6.5840 Schedule: Spring 2024

E25-111, TR1-2:30

Here is the tentative schedule of lectures and due dates. The lecture notes and paper questions for future dates are copies from previous years, and
may change. Lectures are in E25-111, Tues/Thurs 1:00 to 2:30.

feb 5 feb 6 feb 7 feb 8 feb 9
First day of classes LEC 1 (rtm): Introduction, video LEC 2 (rtm): RPC and Threads,
Preparation: Read MapReduce (2004) crawler.go, kv.go, vote examples, video th] []
Assigned: Lab 1: MapReduce Preparation: Do Online Go tutorial
e ymposium on Operating
feb 12 feb 13 feb 14 feb 15 feb 16
LEC 3 (snowstorm): None LEC 4 (rtm): Consistency and DUE: Lab 1. All labs u .
Assigned: Lab 2: Key/Value server Linearizability are due at 11:59pm. S Ste m s P rl n C I es
Preparation: Linearizability Testing
(FAQ) (Question)
feb 19 feb 20 feb 21 feb 22 feb 23
President's day Assigned: Lab 3: Raft LEC 5 (guest lecture): (Russ Cox of | DUE: Lab 2 November 4-6, 2024 - , Texas, USA
Monday schedule Google/Go) Go patterns

Preparation: Read The Go
Programming_Language and
Environment (FAQ) (Question)

FUTURE STUDY

— 2. Contribute to open-source cloud software
— for example, download and play with Kubernetes today
— even submitting a small PR is a big achievement and a good start!

f ZooKeeper / ZOOKEEPER-3531
v

Synchronization on ACLCache cause cluster to hang when network/disk issues happen during
datatree serialization

v Details v People
Type: 0 Bug Status: Assignee: <) Chang Lou
. . . ‘ e, 0 . . .
Priority: Critical Resolution: Fixed Reporter: =) Chang Lou
Affects Version/s: 3.6.2,3.5.3,3.5.4,355 Fix Version/s: 3.6.0 ,
Votes: 0 Vote for this
Component/s: None

. Watchers: 5 Start watchir
Labels: pull-request-available

FUTURE STUDY

— 3. Continue exploring cloud in our grad-level course!

— Focus on Re“ablhty CS6501: Cloud System Reliability

— Paper reading + Project Fall 2024, UVA CS

L
v 5

\ »

— No exam :)
— Undergraduate students are welcomed

.. AFEW MORE WORDS

— Thank you so much for supporting and improving this course!

52

Share your thoughts for future students
on Student Experiences of Teaching!

https://go.blueja.10/34k62-
FXIKKIGXYdtxOxJw

Extra credits for Completed SET!

CS$4740-001 Cloud
Computing

AllIIE
[UNIVERSITY
JVIRGINIA

TAKEAWAYS

— Next class: Final Review
— Deadline of Lab2C: 4/29, Monday
— Today's office hour -> Friday 4-5pm

54

AN

[UNIVERSITY
I\VIRGINIA

ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS
SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

SOME CONTENTS ARE FROM OSDI'21 PREVIEW SESSION VIDEO MADE
BY CHENGCHENG WAN AND LEFAN ZHANG

