
CS4740
CLOUD COMPUTING

Reliability

Prof. Chang Lou, UVA CS, Spring 2024

1

– What is reliability
– Motivation for reliability research
– Software techniques to improve cloud reliability

– Testing
– Program analysis
– Formal methods
– ...

– End of semester concluding remarks :)

AGENDA

– What are some common qualities we measure on systems?

WHAT IS RELIABILITY

– Reliability is not
– Performance: make systems faster
– Usability: make systems more user-friendly
– Security: make systems safer against intrusions
– Cost-effectiveness: make systems more affordable

– Reliability is
– the system's ability to consistently perform its intended function without failure over

a given period.

WHAT IS RELIABILITY

WHAT IS RELIABILITY

– Reliability
– measured with the probability that a system operates without failure in a given

period of time.
– how to compute probability: Mean Time Between Failures (MTBF)

Reliability = 1 −
1

MTBF
= 1 −

NumofBreakdowns
E[uptime]

CLOUD FAILURES

– Cloud failures are prevalent

– Bad user experience

CLOUD FAILURES

CLOUD FAILURES

– Huge economic loss and service unavailability

CLOUD FAILURES

– Cloud systems fail due to different root causes

• H. S. Gunawi et al., Why Does the Cloud Stop Computing? Lessons from Hundreds of Service Outages, In Proceedings of the 6th ACM Symposium on Cloud Computing (SOCC ‘16), October 2016.

CLOUD FAILURES

– .. sometimes very weird root causes

– We focus on solutions for software bugs

REMAINING PART OF LECTURE

TACKLING SOFTWARE ISSUES IN DIFFERENT WAYS

Bug finding

Fuzz testing

Static analysis

Dynamic analysis

...

Can we automatically
find bugs in the codes?

Formal methods

Symbolic execution

Model checking

Theorem proving

...

Can we prove the
codes are bug-free?

Runtime

Failure detection

Failure diagnosis

Failure recovery

...

Can we better handle
failures at runtime?

Testing (fuzzy)

13

TESTING

TESTING

one(11)
disconnect(1)
connect(1)
disconnect(2)..

Execute
program

Check
result

set input

TESTING

Execute
program

Check
result

Test passed, does that
mean your program
has no bug?

tests only cover a small
portion of possibilities!

one(11)
disconnect(1)
connect(1)
disconnect(2)..

set input

search space

– Goal:
– To find program inputs that reveal a bug

– Approach:
– Generate inputs randomly until program reports errors

FUZZ TESTING

– Standard HTTP GET request
– § GET /index.html HTTP/1.1

– Fuzzing HTTP GET request
– § AAAAAA...AAAA /index.html HTTP/1.1
– § GET ///////index.html HTTP/1.1
– § GET %n%n%n%n%n%n.html HTTP/1.1
– § GET /AAAAAAAAAAAAA.html HTTP/1.1
– § GET /index.html HTTTTTTTTTTTTTP/1.1

FUZZ TESTING EXAMPLE

FUZZ TESTING EXAMPLE 2: OPEN-SOURCE SOFTWARE

– Many open-sourced fuzzer implementation
– e.g., Atheris: A Coverage-Guided, Native Python Fuzzer from Google

FUZZ TESTING EXAMPLE 2: OPEN-SOURCE SOFTWARE

– Many open-sourced fuzzer implementation
– e.g., Atheris: A Coverage-Guided, Native Python Fuzzer from Google

Maya: Python
Datetimes Library

>>> scraped = '2016-12-16
18:23:45.423992+00:00'
>>> maya.parse(scraped).datetime()

datetime.datetime(2016, 12, 16, 13, 23, 45,
423992)

>>> maya.parse('may15,2021').datetime()

datetime.datetime(2022, 5, 15, 0, 0, tzinfo=)

Applying fuzzer to find a
triggering input

– How to fuzz testing a distributed system?

FUZZ TESTING EXAMPLE

– Very challenging, especially considering all concurrency and non-
determinism
– here we show an intuitive approach

FUZZ TESTING

Execute
program

Check
result

initial seed

collect &
analyze

mutate
?

set input

one(11)
disconnect(1)
connect(1)
disconnect(2)..

one(11)
disconnect(1)
disconnect(2)..

one(11)
one(12)
disconnect(1)
connect(1)
disconnect(2)..

...

FUZZ TESTING

Execute
program

Check
result

initial seed

collect &
analyze

mutate
?

set input

one(11)
disconnect(1)
connect(1)
disconnect(2)..

one(11)
disconnect(1)
disconnect(2)..

one(11)
one(12)
disconnect(1)
connect(1)
disconnect(2)..

...

use as new seed!

search space

– Strength
– low cost, easy-to-implement
– practical for large programs

FUZZ TESTING

– Weakness
– randomness
– complexity of structured input
– wasted efforts on rejected input

Static analysis

25

STATIC ANALYSIS
func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

rf.mu.Lock()
log.Printf("Worker%d: receive %v \n", rf.me, args)

rf.CheckBehind(args.Term)

reply.Term = rf.currentTerm
if (rf.votedFor == -1 || rf.votedFor == args.CandidateId) && (args.LastLogTerm > rf.log[len(rf.log)-1].Term ||

(args.LastLogTerm == rf.log[len(rf.log)-1].Term && args.LastLogIndex >= len(rf.log)-1)) {
log.Printf("Worker%d: grant true %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)
rf.votedFor = args.CandidateId
rf.currentTerm = args.Term
rf.ifLeaderAlive = true
rf.recentVoted = true
log.Printf("Worker%d: become follower\n", rf.me)
rf.role = Follower

rf.persist()

reply.VoteGranted = true
return

}
reply.VoteGranted = false
log.Printf("Worker%d: grant false %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

rf.mu.Unlock()
}

anything wrong with this
code?

STATIC ANALYSIS
func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

rf.mu.Lock()
log.Printf("Worker%d: receive %v \n", rf.me, args)

rf.CheckBehind(args.Term)

reply.Term = rf.currentTerm
if (rf.votedFor == -1 || rf.votedFor == args.CandidateId) && (args.LastLogTerm > rf.log[len(rf.log)-1].Term ||

(args.LastLogTerm == rf.log[len(rf.log)-1].Term && args.LastLogIndex >= len(rf.log)-1)) {
log.Printf("Worker%d: grant true %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)
rf.votedFor = args.CandidateId
rf.currentTerm = args.Term
rf.ifLeaderAlive = true
rf.recentVoted = true
log.Printf("Worker%d: become follower\n", rf.me)
rf.role = Follower

rf.persist()

reply.VoteGranted = true
return

}
reply.VoteGranted = false
log.Printf("Worker%d: grant false %v %v %v \n", rf.me, rf.votedFor, rf.currentTerm, rf.commitIndex)

rf.mu.Unlock()
}

no unlock() before return!

lock()

unlock()

if (...)

vote(true)

return

vote(false)

return

static analysis uses "patterns" to fine bugs

ANOTHER EXAMPLE

x = 10;
y = x;
z = 0;
while (y > -1) {
 x = x / y;
 y = y - 1;
 z = 5;
}

can x be zero?

ANOTHER EXAMPLE

x = 10;
y = x;
z = 0;
while (y > -1) {
 x = x / y;
 y = y - 1;
 z = 5;
}

y > -1

x = 10

x = x / y

(exit)

y = y - 1

y = x

z = 0

z = 5

ANOTHER EXAMPLE

y > -1

x = 10

x = x / y

(exit)

y = y - 1

y = x

z = 0

z = 5

x:NZ

x:NZ, y:NZ

x:NZ, y:NZ, z:Z

x:NZ, y:NZ, z:Z

x:NZ, y:NZ, z:Z

x:NZ, y:MZ, z:Z

x:NZ, y:MZ, z:NZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:NZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:MZ

x:NZ, y:MZ, z:NZ

SOUNDNESS, COMPLETENESS

Property Definition
Soundness “Sound for reporting correctness”

Analysis says no bugs → No bugs

or equivalently

There is a bug → Analysis finds a bug

Completeness “Complete for reporting correctness”

No bugs → Analysis says no bugs

Recall: A → B is equivalent to (¬B) → (¬A)

SOUNDNESS, COMPLETENESS

Sound Analysis

All Defects

Complete
Analysis

Unsound
and
Incomplete
Analysis

in practice, often settle for
unsound and incomplete
analysis

– Strength
– scalability
– fault localization

STATIC ANALYSIS

– Weakness
– require specific bug pattern (false negative)
– lack runtime information (false positive)

Model checking

34

– “Testing can only show the presence of errors, not their absence.”

TESTING IS USEFUL, HOWEVER..

– Many techniques focus on checking implementation, not design
– What if the system design is incorrect?

MOTIVATION EXAMPLE

– Example: Microwave oven
– Start: “start” button pressed
– Close: is door closed?
– Heat: microwave active
– Error: error state

– Safety property: the oven doesn’t heat up until the door is closed
– (¬Heat) U Close

MOTIVATION EXAMPLE

DEMO: CHECK CHANG'S MICROWAVE OVEN WITH TLA+

– Given state transition graph M
– Let φ be specification (a temporal logic formula)
– Find all states s of M such that for all execution sequences x starting

from s, x,0 ⊨ φ

MODEL CHECKING PROBLEM

– 1. Write a specification of the system in a formal specification language
(think math).  

– 2. Specify correctness properties as invariants on states or behaviors.  

– 3. Use a model checker to exhaustively check that  
every state/behavior of the system, within a bounded  
range of configurations, satisfies your invariants.
– e.g., TLA+ (by Leslie Lamport)

MODEL CHECKING STEPS

MODEL CHECKING RAFT
https://github.com/Vanlightly/raft-tlaplus/blob/main/specifications/standard-raft/Raft.tla

Concluding remarks

42

43

IT HAS BEEN A LONG JOURNEY..

Cloud and Distributed System Fundamentals Real-world Cloud Special Topics

MapReduce RPC

Transaction

Time and Coordination

Agreement

2PC

Consensus (e.g., Raft)

Isolation Consistency

GFS

ZooKeeper

Large Infra

Virtualization

ML system

Reliability

44

WE BUILT TWO CLOUD SYSTEMS..

MapReduce Raft

45

PLAYED WITH COMMERCIAL CLOUD SYSTEMS..

Google File System ZooKeeper (Lab Day I, Lab Day II)

46

GAMES..

Green cup, Red cup
Consensus

Consensus
(w/ malicious peers)

Gandalf2PC failures w/ Donut

47

DISCUSSION WITH CLOUD EXPERTS..

"Managing Cloud Health with AIOps"
(Microsoft Azure)

"Block Store over the Cloud"
(Alibaba Cloud)

What if I'd like to learn more

48

FUTURE STUDY

– 1. Online resources
– cloud/distributed system course, e.g., MIT 6.824
– follow up latest progress on top system conferences, e.g., SOSP/OSDI

FUTURE STUDY

– 2. Contribute to open-source cloud software
– for example, download and play with Kubernetes today
– even submitting a small PR is a big achievement and a good start!

FUTURE STUDY

– 3. Continue exploring cloud in our grad-level course!
– Focus on Reliability
– Paper reading + Project
– No exam :)
– Undergraduate students are welcomed

52

.. A FEW MORE WORDS

– This is a class in “progress.”

you me

– Thank you so much for supporting and improving this course!

Share your thoughts for future students
on Student Experiences of Teaching!

https://go.blueja.io/34k62-
FXlkKIGXYdtxOxJw

Extra credits for Completed SET!

TAKEAWAYS

54

– Next class: Final Review
– Deadline of Lab2C: 4/29, Monday
– Today's office hour -> Friday 4-5pm

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

SOME CONTENTS ARE FROM OSDI'21 PREVIEW SESSION VIDEO MADE
BY CHENGCHENG WAN AND LEFAN ZHANG

