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Are we living in the real world, 
or a simulation?
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INTRODUCTION
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– If the answer is yes, is there a way to tell?

– Hope you can get some insights from today's lecture :)



AGENDA
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– Motivation

– Techniques
– Virtual machines
– Containers

*This lecture's slides are heavily based on Prof. Ryan Huang's OS course at UMich



Why cloud computing needs 
virtualization? 
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Efficiency?
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What if we can allow different customers
share hardware resources?



VIRTUALIZATION: BENEFITS
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– Resource efficiency
– Maximum use of the physical hardware’s computing capacity.

– Easier management
– Automated IT service management workflows.

– Minimal downtime
– Failover and migration.

– Faster provisioning



VIRTUALIZATION: BENEFITS (CONTD.)
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– Software compatibility 
– VMMs can run pretty much all software

– Isolation
– Seemingly total data isolation between virtual machines
– Leverage hardware memory protection mechanisms

– Encapsulation
– Virtual machines are not tied to physical machines
– Checkpoint/migration

– Many other cool applications
– Debugging, emulation, security, speculation, fault tolerance…



OLD IDEA FROM THE 1970S
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– IBM VM/370 – A VMM for IBM mainframe 
– Multiplex multiple OS environments on expensive hardware 
– Desirable when few machines around 

– Interest died out in the 1980s and 1990s 
– Hardware got cheap 
– Compare Windows NT vs. N DOS machines 

– Revived by the Disco [SOSP ’97] work 
– Led by Mendel Rosenblum, later lead to the foundation of VMware 

– Another important work Xen [SOSP ’03]



How to implement 
virtualization?
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BACKGROUND: OS
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– OS is software between applications and hardware
– Abstracts hardware to makes applications portable
– Makes finite resources (memory, # CPU cores) appear much larger
– Protects processes and users from one another



VIRTUAL MACHINE
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– Thin layer of software that virtualizes the hardware 
– Exports a virtual machine abstraction that looks like the hardware 
– Provides the illusion that software has full control over the hardware
– Run multiple instances of an OS or different OSes simultaneously on the same physical 

machine



VMMS TODAY
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– VMs are used everywhere
– Popularized by cloud computing
– Used to solve different problems 

– VMMs are a hot topic in industry and academia
– Industry commitment

– Software: VMware, Xen,…
– Hardware: Intel VT, AMD-V

– Academia: lots of related projects and papers



IMPLEMENTING VMMS - REQUIREMENTS
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– Fidelity
– OSes and applications work the same without modification
– (although we may modify the OS a bit)

– Isolation
– VMM protects resources and VMs from each other

– Performance
– VMM is another layer of software…and therefore overhead
– As with OS, want to minimize this overhead
– CPU-intensive apps: 2-10% overhead (early)
– I/O-intensive apps: 25-60% overhead (much better today)



VMM CASE STUDY 1: XEN
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– Early versions use “paravirtualization”
– Fancy word for “we have to modify & recompile the OS”
– Since you’re modifying the OS, make life easy for yourself
– Create a VMM interface to minimize porting and overhead

– Xen hypervisor (VMM) implements interface
– VMM runs at privilege, VMs (domains) run unprivileged
– Trusted OS (Linux) runs in own domain (Domain0)

– Most recent version of Xen does not require OS mods
– Because of Intel/AMD hardware support

– Commercialized via XenSource, but also open source



XEN ARCHITECTURE
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VMM CASE STUDY 2: VMWARE
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– VMware workstation uses hosted model
– VMM runs unprivileged, installed on base OS (+ driver)
– Relies upon base OS for device functionality

– VMware ESX server uses hypervisor model
– Similar to Xen, but no guest domain/OS

– VMware uses software virtualization
– Dynamic binary rewriting translates code executed in VM
– Think JIT compilation for JVM, but full binary x86 -> IR code -> safe subset of x86
– Incurs overhead, but can be well-tuned (small % hit)



VMWARE HOSTED ARCHITECTURE
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WHAT NEEDS TO BE VIRTUALIZED?
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– Exactly what you would expect
– CPU, Memory, I/O devices, Events (exceptions and interrupts)

– How to do it?



APPROACH 1: COMPLETE MACHINE SIMULATION 
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– Simplest VMM approach, used by bochs 
– Run the VMM as a regular user application atop a host OS 
– Application simulates all the hardware (i.e., a simulator) 

– CPU – A loop that fetches each instruction, decodes it, simulates its effect 

– Memory – Memory is just an array, simulate the MMU on all memory accesses
– I/O – Simulate I/O devices, programmed I/O, DMA, interrupts

while (1) { 
  curr_instr = fetch(virtHw.PC); virtHw.PC += 4; 
  switch (curr_instr) { 
    case ADD: 
      int sum = virtHw.regs[curr_instr.reg0] + 
        virtHw.regs[curr_instr.reg1]; 
    virtHw.regs[curr_instr.reg0] = sum; 
    break; 
    case SUB: //... 



APPROACH 1: COMPLETE MACHINE SIMULATION 
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This 8-bit processor built in Minecraft can run its own games | PCWorld



APPROACH 1: COMPLETE MACHINE SIMULATION 
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– Simplest VMM approach, used by bochs 
– Run the VMM as a regular user application atop a host OS 
– Application simulates all the hardware (i.e., a simulator) 
– Problem?

– Too slow! 
– CPU/Memory – 100x CPU/MMU simulation
– I/O Device – < 2× slowdown.
– 100× slowdown makes it not too useful 

– Need faster ways of emulating CPU/MMU 



APPROACH 2: DIRECT EXECUTION W/ TRAP & EMULATE 
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– Observations: Most instructions are the same regardless of 
processor privileged level 
– Example: incl %eax

– Why not just give instructions to CPU to execute? 

– One issue: Safety – How to get the CPU 
back? Or stop it from stepping on us? How 
about cli/halt? 

– Solution: Use protection mechanisms already in CPU



BACKGROUND: DUAL-MODE OPERATION IN CPU
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– User mode 
– Limited privileges
– Only those granted by the operating 

system kernel

– Kernel mode
– Execution with the full privileges of the 

hardware
– Read/write to any memory, access I/O 

device, read/write disk sector, send/read 
packet



APPROACH 2: DIRECT EXECUTION W/ TRAP & EMULATE 

28

– Run virtual machine’s OS directly 
on CPU in unprivileged user 
mode 
– “Trap and emulate” approach
– Most instructions just work
– Privileged instructions trap into monitor 

and run simulator on instruction



BACKGROUND: PAGE TABLE

29



VIRTUALIZING MEMORY 
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VIRTUALIZING MEMORY 
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VIRTUALIZING I/O: THREE MODES
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– Xen: modify OS to use low-level I/O interface (hybrid) 
– Define generic devices with simple interface: Virtual disk, virtual NIC, etc. 
– Ring buffer of control descriptors, pass pages back and forth
– Handoff to trusted domain running OS with real drivers 

– VMware: VMM supports generic devices (hosted) 
– E.g., AMD Lance chipset/PCNet Ethernet device 
– Load driver into OS in VM, OS uses it normally 
– Driver knows about VMM, cooperates to pass the buck to a real device driver (e.g., on 

underlying host OS) 

– VMware ESX Server: drivers run in VMM (hypervisor) 



VIRTUALIZING I/O: THREE MODES
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Abramson et al., “Intel Virtualization Technology for Directed I/O”, Intel Technology Journal, 10(3) 2006 



Containers
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7921010
CONTAINERS
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"Virtualization vs Containerization to support PaaS", VMware
DIFFERENCES BETWEEN VMMS AND CONTAINERS
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"Virtualization vs Containerization to support PaaS", VMware
DIFFERENCES BETWEEN VMMS AND CONTAINERS
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DOCKER
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– A software platform that allows you to build, test, and deploy applications quickly.
– Docker packages software into standardized units

– including libraries, system tools, code, and runtime.

– Quickly deploy and scale applications into any environment

Example Docker file



KUBERNETES (K8S)
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– An open-source container orchestration system
– Inspired by Google's Borg cluster manager 
– Widely deployed software systems in the world
– Features

– Service discovery and load balancing
– Storage orchestration
– Automated rollouts and rollbacks
– Self-healing
– ...



KUBERNETES (K8S)
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IS THERE A WAY TO TELL LIVING IN VIRTUALIZATION OR REALITY?
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– For humans, maybe not 
– For software, especially malware, yes

– Scan registry entries specific to virtualization software
– Monitor for specific processes or files that are typically part of virtualization software
– Check firmware: known MAC addresses associated with virtual machines, check 

BIOS serial numbers
– Run specialized instruction sets

– Some malware try to escape from VMs (run, Neo!)



TAKEAWAYS
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– VMMs multiplex virtual machines on hardware 
– Implementing VMMs by virtualizing CPU, Memory, I/O
– Lesson: Never underestimate the power of indirection 
– Next class: Hacker Day

– fix bugs in lab 2a, 2b and implement lab 2c!
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