
CS4740
CLOUD COMPUTING

Virtualization

Prof. Chang Lou, UVA CS, Spring 2024

1

Are we living in the real world,
or a simulation?

2

3

4

INTRODUCTION

5

– If the answer is yes, is there a way to tell?

– Hope you can get some insights from today's lecture :)

AGENDA

6

– Motivation

– Techniques
– Virtual machines
– Containers

*This lecture's slides are heavily based on Prof. Ryan Huang's OS course at UMich

Why cloud computing needs
virtualization?

7

8

Efficiency?

9

What if we can allow different customers
share hardware resources?

VIRTUALIZATION: BENEFITS

10

– Resource efficiency
– Maximum use of the physical hardware’s computing capacity.

– Easier management
– Automated IT service management workflows.

– Minimal downtime
– Failover and migration.

– Faster provisioning

VIRTUALIZATION: BENEFITS (CONTD.)

11

– Software compatibility
– VMMs can run pretty much all software

– Isolation
– Seemingly total data isolation between virtual machines
– Leverage hardware memory protection mechanisms

– Encapsulation
– Virtual machines are not tied to physical machines
– Checkpoint/migration

– Many other cool applications
– Debugging, emulation, security, speculation, fault tolerance…

OLD IDEA FROM THE 1970S

12

– IBM VM/370 – A VMM for IBM mainframe
– Multiplex multiple OS environments on expensive hardware
– Desirable when few machines around

– Interest died out in the 1980s and 1990s
– Hardware got cheap
– Compare Windows NT vs. N DOS machines

– Revived by the Disco [SOSP ’97] work
– Led by Mendel Rosenblum, later lead to the foundation of VMware

– Another important work Xen [SOSP ’03]

How to implement
virtualization?

13

BACKGROUND: OS

14

– OS is software between applications and hardware
– Abstracts hardware to makes applications portable
– Makes finite resources (memory, # CPU cores) appear much larger
– Protects processes and users from one another

VIRTUAL MACHINE

15

– Thin layer of software that virtualizes the hardware
– Exports a virtual machine abstraction that looks like the hardware
– Provides the illusion that software has full control over the hardware
– Run multiple instances of an OS or different OSes simultaneously on the same physical

machine

VMMS TODAY

16

– VMs are used everywhere
– Popularized by cloud computing
– Used to solve different problems

– VMMs are a hot topic in industry and academia
– Industry commitment

– Software: VMware, Xen,…
– Hardware: Intel VT, AMD-V

– Academia: lots of related projects and papers

IMPLEMENTING VMMS - REQUIREMENTS

17

– Fidelity
– OSes and applications work the same without modification
– (although we may modify the OS a bit)

– Isolation
– VMM protects resources and VMs from each other

– Performance
– VMM is another layer of software…and therefore overhead
– As with OS, want to minimize this overhead
– CPU-intensive apps: 2-10% overhead (early)
– I/O-intensive apps: 25-60% overhead (much better today)

VMM CASE STUDY 1: XEN

18

– Early versions use “paravirtualization”
– Fancy word for “we have to modify & recompile the OS”
– Since you’re modifying the OS, make life easy for yourself
– Create a VMM interface to minimize porting and overhead

– Xen hypervisor (VMM) implements interface
– VMM runs at privilege, VMs (domains) run unprivileged
– Trusted OS (Linux) runs in own domain (Domain0)

– Most recent version of Xen does not require OS mods
– Because of Intel/AMD hardware support

– Commercialized via XenSource, but also open source

XEN ARCHITECTURE

19

VMM CASE STUDY 2: VMWARE

20

– VMware workstation uses hosted model
– VMM runs unprivileged, installed on base OS (+ driver)
– Relies upon base OS for device functionality

– VMware ESX server uses hypervisor model
– Similar to Xen, but no guest domain/OS

– VMware uses software virtualization
– Dynamic binary rewriting translates code executed in VM
– Think JIT compilation for JVM, but full binary x86 -> IR code -> safe subset of x86
– Incurs overhead, but can be well-tuned (small % hit)

VMWARE HOSTED ARCHITECTURE

21

WHAT NEEDS TO BE VIRTUALIZED?

22

– Exactly what you would expect
– CPU, Memory, I/O devices, Events (exceptions and interrupts)

– How to do it?

APPROACH 1: COMPLETE MACHINE SIMULATION

23

– Simplest VMM approach, used by bochs
– Run the VMM as a regular user application atop a host OS
– Application simulates all the hardware (i.e., a simulator)

– CPU – A loop that fetches each instruction, decodes it, simulates its effect

– Memory – Memory is just an array, simulate the MMU on all memory accesses
– I/O – Simulate I/O devices, programmed I/O, DMA, interrupts

while (1) { 
 curr_instr = fetch(virtHw.PC); virtHw.PC += 4; 
 switch (curr_instr) {
 case ADD: 
 int sum = virtHw.regs[curr_instr.reg0] +
 virtHw.regs[curr_instr.reg1];
 virtHw.regs[curr_instr.reg0] = sum;
 break;
 case SUB: //...

APPROACH 1: COMPLETE MACHINE SIMULATION

24

This 8-bit processor built in Minecraft can run its own games | PCWorld

APPROACH 1: COMPLETE MACHINE SIMULATION

25

– Simplest VMM approach, used by bochs
– Run the VMM as a regular user application atop a host OS
– Application simulates all the hardware (i.e., a simulator)
– Problem?

– Too slow!
– CPU/Memory – 100x CPU/MMU simulation
– I/O Device – < 2× slowdown.
– 100× slowdown makes it not too useful

– Need faster ways of emulating CPU/MMU

APPROACH 2: DIRECT EXECUTION W/ TRAP & EMULATE

26

– Observations: Most instructions are the same regardless of
processor privileged level
– Example: incl %eax

– Why not just give instructions to CPU to execute?

– One issue: Safety – How to get the CPU
back? Or stop it from stepping on us? How
about cli/halt?

– Solution: Use protection mechanisms already in CPU

BACKGROUND: DUAL-MODE OPERATION IN CPU

27

– User mode
– Limited privileges
– Only those granted by the operating

system kernel

– Kernel mode
– Execution with the full privileges of the

hardware
– Read/write to any memory, access I/O

device, read/write disk sector, send/read
packet

APPROACH 2: DIRECT EXECUTION W/ TRAP & EMULATE

28

– Run virtual machine’s OS directly
on CPU in unprivileged user
mode
– “Trap and emulate” approach
– Most instructions just work
– Privileged instructions trap into monitor

and run simulator on instruction

BACKGROUND: PAGE TABLE

29

VIRTUALIZING MEMORY

30

VIRTUALIZING MEMORY

31

VIRTUALIZING I/O: THREE MODES

32

– Xen: modify OS to use low-level I/O interface (hybrid)
– Define generic devices with simple interface: Virtual disk, virtual NIC, etc.
– Ring buffer of control descriptors, pass pages back and forth
– Handoff to trusted domain running OS with real drivers

– VMware: VMM supports generic devices (hosted)
– E.g., AMD Lance chipset/PCNet Ethernet device
– Load driver into OS in VM, OS uses it normally
– Driver knows about VMM, cooperates to pass the buck to a real device driver (e.g., on

underlying host OS)

– VMware ESX Server: drivers run in VMM (hypervisor)

VIRTUALIZING I/O: THREE MODES

33

Abramson et al., “Intel Virtualization Technology for Directed I/O”, Intel Technology Journal, 10(3) 2006

Containers

34

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7921010
CONTAINERS

35

"Virtualization vs Containerization to support PaaS", VMware
DIFFERENCES BETWEEN VMMS AND CONTAINERS

36

"Virtualization vs Containerization to support PaaS", VMware
DIFFERENCES BETWEEN VMMS AND CONTAINERS

37

DOCKER

38

– A software platform that allows you to build, test, and deploy applications quickly.
– Docker packages software into standardized units

– including libraries, system tools, code, and runtime.

– Quickly deploy and scale applications into any environment

Example Docker file

KUBERNETES (K8S)

39

– An open-source container orchestration system
– Inspired by Google's Borg cluster manager
– Widely deployed software systems in the world
– Features

– Service discovery and load balancing
– Storage orchestration
– Automated rollouts and rollbacks
– Self-healing
– ...

KUBERNETES (K8S)

40

IS THERE A WAY TO TELL LIVING IN VIRTUALIZATION OR REALITY?

41

– For humans, maybe not
– For software, especially malware, yes

– Scan registry entries specific to virtualization software
– Monitor for specific processes or files that are typically part of virtualization software
– Check firmware: known MAC addresses associated with virtual machines, check

BIOS serial numbers
– Run specialized instruction sets

– Some malware try to escape from VMs (run, Neo!)

TAKEAWAYS

42

– VMMs multiplex virtual machines on hardware
– Implementing VMMs by virtualizing CPU, Memory, I/O
– Lesson: Never underestimate the power of indirection
– Next class: Hacker Day

– fix bugs in lab 2a, 2b and implement lab 2c!

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS LECTURE INCORPORATES MATERIALS FROM PROF. RYAN HUANG'S OS
COURSE AND PROF. ZAOXING (ALAN) LIU'S CLOUD COMPUTING COURSE.

