CLOUD COMPUTING

Cloud Infrastructure in Industry

Prof. Chang Lou, UVA CS, Spring 2024

* SIGAI at UVA @
e a part of ACM at UVA

ARTIFIGIAL INTELLIGENGE
TOWN HALL

- B AN INTERDISCIPLINARY DISCUSSION

_ t« Al and You: Navigating the Future
y - Together at UVA and in the Broader World

EXPERT PANELISTS

PROF. MADHUR BEHL

Computer Science

PROF. REZA MOUSAVI

Commerce

TUESI?AY
16th April, 2024 PROF. MICHAEL PALMER

Center for Teaching Excellence, Director

X/ REGISTER NOW Y/

5:30-7:00 PM

NEWCOMB THEATRE

Located in Lower Level
Below Pavilion Xl

e Questions/Comments

sigai-contact@virginia.edu sigai-at-uva.org

LECTURE THEME

— We talked a lot about storage in this class, plus a bit about distributed computation.
For storage, we focused on a particular type of interface (transactional databases).

— But there’s a vast range of infrastructural components that are needed for building
successful distributed applications. Large companies and open-source
communities have such components available.

— This lecture aims to provide an index of such components. We won't give details
about how these components are built, but pointers to where you can find out
more.

— the contents are heavily based on Malte Schwarzkopf's talk at Cambridge

3

“WHAT IT TAKES TO BUILD GOOGLE?”

Google Search I'm Feeling Lucky

Google university of virginia 1 Q @

Images Maps Cost News Perspectives Acceptance rate Ranking Graduate programs Degrees All filters ~ Tools SafeSearch ~

About 3,710,000,000 results (0.57 seconds)

University of Virginia

Charlottesville, VA - Public - 4-year

(Overview) Admissions Programs Outcomes Students

@ The University of Virginia About

https://www.virginia.edu
virginia.edu

The University of Virginia

The University of Virginia - Info For - Search form - Main menu - Glance: UVA Students Report The University of Virginia is a public research university in
Positive Climate in Classrooms for Diverse Perspectives - Glance: ... Charlottesville, Virginia, United States. It was founded in
Q 1819 by Thomas Jefferson and contains his Academical

Village, a UNESCO World Heritage Site. Wikipedia
Acad emiCS Avg cost after aid Graduation rate Acceptance rate
Undergraduate Majors - Graduate Studies - Schools - ... $21K 95% 19%

Graduation rate is for first-time, full-time undergraduate stt more v

Admission
Apply - Affording UVA - Undergraduate Majors - ...

From US Dept of Education - Learn more

_ Address: Charlottesville, VA
Graduate Studies

With more than a hundred advanced degrees to choose ... Phone: (434) 924-0311

N Known for

University of Virginia known for
A Leader in Public Higher Education. The University is an ...

Sat score

What happens here?

A
-z N

Stalled [9.524ms
Request sent 0.506 ms
Waiting (TTFB) 125.827 ms
Content Download] 3.016 ms
Explanation 05 ms

T 125.827 ms
N 3.016 ms

139.605 ms

WHAT HAPPENS IN THOSE 139MS?

Google
Your Internet
computer \ . datacenter
feece] T e0ce| $

g Front r\/:x)6\ l]

Y Y Y Y Y Y Y Y e

100600000 AA8AAAC

A TOUR TO DATACENTER

— 1. Datacenter hardware

— 2. Datacenter software

— a. Google
— b. Meta and Open source
— ¢. Moving forward: ML stack

Haraware

" Amazon Web Services - IAD28

4.7 % %% % % (65) - Corporate office in Fairfax County, Virginia

137+ Photos |

& Directions

Overview Reviews

Address: 13200 Woodland Park Rd, Herndon, VA 20171
Phone: (571) 260-2603

Suggest an edit - Own this business?

Add missing information
Add business hours

Add website

Leesburg

Waxpool

Brambleton

aymarket

Centreville

Germantown

Poolesville Gaithersburg

270

Rockville

“Riyey

(7

Potomac

Amazon.Web

Dulles Services - |IAD28

193

Element Critical
Center'-Norther

CoreSite Reston
Data,Center (VA1)

Chantilly 3
D Data’Center

Arlingtoi

Fairfax

@ -

AmazonL

Gainesville Iron Mountain Xy Burke
Data Centers VA-1 @

B WV EREEEER

Bristow

619

Catlett

Fort.Belvoir
Lorton

Woodbridge
Dale City
Montclair

Prince William

l [4 1 L

11

’4
J 17\
7]
A

\b . wWwn

Ly <
D e il

A =
e

2 Sehh -3 -0 8-
7 e

From Meta (as of 2022).

— O(?) machines in total

— O(?) regions

— O(?) interdependent services

— “Machine”

— no chassis
— DC battery
— mostly custom-made

— Network
— ToR switch
— multi-path core

-

AL i e R e L. L L T N T R
. \-"":-’ .) L
- i

5 a J ’a a \ f
t
o
. i = = - a H - 1T . P
A + Y g ?~ b g
s

-

s = im Awm ni ‘i Uy
| . .| 3 | ' y, : ' - ~

|

=
-

. ';
.
¢ ot
i:
s .’
‘9
é .,
; ’
il
; ’.

VTN Y TR N T i N L N N R LR

i L e

13

From Meta (as of 2022).

— O(1M) machines in total

— O(10s) regions

— O(1000s) interdependent services

— “Machine”

— no chassis
— DC battery
— mostly custom-made

— Network
— ToR switch
— multi-path core

-

AL i e R e L. L L T N T R
. \-"":-’ .) L
- i

5 a J ’a a \ f
t
o
. i = = - a H - 1T . P
A + Y g ?~ b g
s

-

s = im Awm ni ‘i Uy
| . .| 3 | ' y, : ' - ~

|

=
-

. ';
.
¢ ot
i:
s .’
‘9
é .,
; ’
il
; ’.

VTN Y TR N T i N L N N R LR

i L e

14

THE JOYS OF REAL HARDWARE

Source: Jeff Dean https://static.googleusercontent.com/media/research.google.com/en//people/jeft/stanford-295-talk.pdf, 2007.

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <6 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~600-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

15

WHAT IT TAKES TO MANAGE LARGE-SCALE SYSTEMS

and how is it different from HPC?

— Emphasis on commodity hardware
— No expensive interconnect
— Mid-range machines
— Energy/performance/cost trade-off essential

— Massive automation
— Very small number of on-site staff
— Automated software bootstrap

— Fault tolerant design
— Each component can fall
— Software must be aware and compensate

16

Software

SOFTWARE SYSTEMS STACK

Transparent distributed systems

Linux kernel Linux kernel Linux kernel

(customized) (customized) (customized)

Machine Machine Machine

18

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing
FlumeJava [CRP710]| | Tenzing [CLL*11] | | MillWheel [ABB*13] | |Pregel [MAB*10]

A parallel programming SQL-on-MapReduce stream processing graph processing
A

\ MapReduce [DGOS] ¥ Percolator [PD10]
A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

AT ée_ ——— s query Ul & columnar store

MegaStore [BBC'11] Spanner [CDE"13] Dremel [MGL"10] _ T

across-DC ACID database cross-DC multi-version DB A A columnar database

Y l - - - - - - - - - - T T T T - ="
v BigTable [CDG06]) [_ Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy, < 5

\ GFS/Colossus [GGLO03] ¥ \ \
distributed block store and file system

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <> Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing
FlumeJava [CRP710]| | Tenzing [CLL*11] | | MillWheel [ABB*13] | |Pregel [MAB*10]

A parallel programming SQL-on-MapReduce stream processing graph processing
A
\ MapReduce [DGOS] \ Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

datasiorage T > query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y l - - - - - - - - - - - - - - - === === ="

v BigTable [CDG06]) I Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy < F
Y

GFS/Colossus [GGLO03]
distributed block store and file system

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <+ Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

GFS/COLOSSUS

— Bulk data block storage system
— Optimized for large files (GB-size)
— Supports small files, but not common case
— Read, write, record-append modes

— Colossus = GFSv2, adds some improvements
— e.g., Reed-Solomon-based erasure coding
— better support for latency-sensitive applications
— sharded meta-data layer, rather than single master

21

GFS/COLOSSUS

Application

@

GFS library

|*k

GFS Master

/>\ Namespace
Metadata

Chunkserver

Chunkserver

Chunkserver

COCOCO

22

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing
FlumeJava [CRP710]| | Tenzing [CLL*11] | | MillWheel [ABB*13] | |Pregel [MAB*10]

A parallel programming SQL-on-MapReduce stream processing graph processing
A
\ MapReduce [DGOS] \ Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

datasiorage T > query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database
Y |7 -~ -~ - - —-—-—- - - === === = = — = = — — -

\ BigTable [CDG06] I Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy < F
Y

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <+ Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

MOTIVATION

— Lots of (semi-)structured data at Google
— Web data: Contents, crawl metadata, links, anchors, pagerank, ...
— Per-user data: « User preference settings, recent queries/search results, ...

— Map data: Physical entities (shops, restaurants, etc.), roads, satellite image data, user
annotations, ...

— Scale is huge
— Billions of Web pages, many versions/page (~20K/version)
— Hundreds of millions of users, thousands of g/sec
— 100TB+ of satellite image data
— (Above numbers are as of 2006-7!)

24

WEB SEARCH: THE COMPLETE WORKFLOW

, N Web Search
Internet B Bigtable Powered by Bigtable
@]— Webtable
@ MapReduce
Indexing the internet
Crawlers constantly scour the internet for new
pages. Those pages are stored as individual @
records in Bigtable.
@ A MapReduce job runs over the entire table, @
generating search indexes for the web search é)
application. Search - - w -
Index - eb Search
>
- y,
Note: ignores page rank @
functionality for simplicity Searching the internet
@ The user initiates a web search request. You
Source: “Hbase in Action”, Dimiduk, et.al, @ The web search application queries the search indexes
http://www.manning.com/dimidukkhurana/HBiAs and retries matching documents directly from Bigtable. 9
ample ch1.pdf @ Search results are presented to the user.

25

GOALS

— Want asynchronous processes to continuously update different
pieces of data

— Want access to most current data at any time

— Need to support:
— Very high read/write rates (millions of ops per second)
— Efficient retrieval of small subsets of the data
— Efficient scans over entire or subsets of the data

— Often want to examine data changes over time
— E.g. Contents of a web page over multiple crawls

26

BIGTABLE (2006)

— "Three-dimensional’ key-value store:
— <row key, column key, timestamp> — value

— Effectively a distributed, sorted, sparse map

rJ

cell

row
(key: string)

<“larry.page”, “websearch”, 133746428> — “cat pictures”/
s — timestamp

(key: int64)

column
(key: string)

27

SYSTEM ARCHITECTURE

Bigtable cell

Bigtable tablet server

Bigtable client
Metadata ops | Bigtable client |
Bigtable master [* library
performs metadata\ops,
load balancing Open()

Bigtable tablet server

ead/write
v

Bigtable tablet server

_/

serves data serves data erves data
GFS Chubby |«
holds tablet data holds metadata,

handles master-election

28

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing

FlumeJava [CRP710]| | Tenzing [CLL*11]

A parallel programming SQL-on-MapReduce

MillWheel [ABB*13] | |Pregel [MAB*10]

Stream processing graph processing

A

\ MapReduce [DGOS] \ Percolator [PD10]
A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

data storage

o B e e et s query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y
Y BigTable [CDG"06])

| <[Dapper [SBB*10] |

row-consistent multi-dimensional sparse mapy <

pervasive tracing

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <+ Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

SPANNER (2012)

— Big Table insufficient for some consistency needs

— Often have transactions across >1 data centers
— May buy app on Play Store while travelling in the U.S.
— Hit U.S. server, but customer billing data is in U.K.
— Or may need to update several replicas for fault tolerance

— Wide-area consistency is hard
— due to long delays and clock skew
— no global, universal notion of time
— NTP not accurate enough, PTP doesn’t work (jittery links)

30

SPANNER (2012)

— Spanner offers transactional consistency: full RDBMS

— Secret sauce: hardware-assisted clock sync
— Using GPS and atomic clocks in data centres

— Use global timestamps and Paxos to reach consensus
— Still have a period of uncertainty for write TX: walt it out!
— Each timestamp is an interval:

tt.earliest |—<|>—‘ tt.latest

Definitely in { Definitely in
the past abs the future

31

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing
FlumeJava [CRP710]| | Tenzing [CLL*11] | | MillWheel [ABB*13] | |Pregel [MAB*10]

A parallel programming SQL-on-MapReduce stream processing graph processing
A
MapReduce [DGOS] \ Percolator [PD10]

parallel batch processing incremental processing | | PowerDrill [HBB¥12]

datasiorage T > query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y l - - - - - - - - - - - - - - - === === ="

v BigTable [CDG06]) I Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy < F
Y

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <+ Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

MAPREDUCE (2004)

— Parallel programming framework for scale
— Run a program on 100’s to 10,000’s machines

— Framework takes care of:

— Parallelization, distribution, load-balancing, scaling up (or down) & fault-
tolerance

— Accessible: programmer provides two methods ;-)
— map(key, value) — list of <key’, value’> pairs

— reduce(key’, value’) — result
— Inspired by functional programming

33

MAPREDUCE (2004)

Input Perform Map() query against local data
matching input specification

e

§5§\\\§ ssfq’{/ég\}'z{/{é

S/ S

Aggregate gathered results for each
intermediate key using Reduce()

N N ~ N N N~ ~—t O~ N N “

Reduce

\/

OutpuL

End user can query results via Results: X: 8, Y: 8

distributed key/value store

34

MAPREDUCE: PROS & CONS

— Extremely simple, and:

— Can auto-parallelize (since operations on every
element in input are independent)

— Can auto-distribute (since rely on underlying Colossus/BigTable distributed storage)

— Qets fault-tolerance (since tasks are idempotent, i.e. can just re-execute if a
machine crashes)

— Doesn't really use any sophisticated distributed systems algorithms
(except storage replication)

— However, not a panacea:

— Limited to batch jobs, and computations which are expressible as a map() followed
by a reduce()

35

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing

FlumeJava [CRP710]| | Tenzing [CLL*11]

A parallel programming SQL-on-MapReduce

MillWheel [ABB*13] | |Pregel [MAB*10]

Stream processing graph processing

A

\ MapReduce [DGOS] \ Percolator [PD10]
A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

data storage

o B e e et s query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y
Y BigTable [CDG"06])

| <[Dapper [SBB*10] |

row-consistent multi-dimensional sparse mapy <

pervasive tracing

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] <+ Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

DREMEL (2010)

— Column-oriented store
— For quick, interactive queries

_]lllll:lll
[/ANEE EHE| [((EEEEEEEENCOEE CeE®=EC
HE EHCEE
EEEC .

HEEEE HBE
pr pomm| CHOOOONSESEEEEENESEEEE

H BECENE Column-oriented storage

Row-oriented storage

OO0 B0

37

DREMEL (2010)

user_id user_name
1 freddie @gmail.com'
2 lindsey @gmail.com’
3 'tabby @yahoo.com'
4 philip@hotmail.com’
5 elon@x.com'

SELECT sum(current_balance)
FROM table
WHERE user_id > 2

Suitable for columnar DB

current balance

number of transactions

1059298 1224
254 1045
3910 194
234028 130
-44000000000 1

SELECT user_id, user_name,
current_balance

FROM table

WHERE user_id =1

Suitable for row-oriented DB

38

mailto:freddie@gmail.com
mailto:lindsey@gmail.com
mailto:tabby@yahoo.com
mailto:philip@hotmail.com
mailto:elon@x.com

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing

FlumeJava [CRP710]| | Tenzing [CLL*11]

A parallel programming SQL-on-MapReduce

MillWheel [ABB*13] | |Pregel [MAB*10]

Stream processing graph processing

A

\ MapReduce [DGOS] \ Percolator [PD10]
A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

data storage

o B e e et s query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y
Y BigTable [CDG"06])

| <[Dapper [SBB*10] |

row-consistent multi-dimensional sparse mapy <

pervasive tracing

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur(06] > Borg [VPK*15] and Omega [SKA™13] v

locking and coordination cluster manager and job scheduler

CHUBBY SUMMARY

— Lock Service

— Chubby uses Paxos for everything
— Propagate writes to a file
— Choosing a Master
— Even for adding new Chubby servers to a Chubby cell

— Paxos transforms a multi-node service into something that looks
very much like one fault-tolerant, albeit slower, server! -> pretty
close to distributed systems’ core goal

40

CHUBBY INTERFACE: UNIX FILE SYSTEM

— Chubby supports a strict tree of files and directories

— The way to think about these files is that they are locks with a little bit of contents (e.g., identity and
location of a primary)

— No symbolic links, no hard links

— /Is/ffoo/wombat/pouch
— 1st component (Is): lock service (common to all names)
— 2nd component (foo): the chubby cell (used in DNS lookup to find the cell master)
— The rest: name inside the cell

— Support most normal operations
— Create, delete, open, write, ...

— Support reader/writer lock on a node

41

EXAMPLE: PRIMARY ELECTION

If (successful) {
// primary
SetContents(primary_identity);
} else {
// replica
Open(“/Is/foo/OurServicePrimary”, *
“file-modification event”);
when notified of file modification:
primary = GetContentsAndStat();

;

Open(“/Is/foo/OurServicePrimary”, “write mode”);

read mode”,

42

THE Google STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

data processing
FlumeJava [CRP710]| | Tenzing [CLL*11] | | MillWheel [ABB*13] | |Pregel [MAB*10]

A parallel programming SQL-on-MapReduce stream processing graph processing
A
\ MapReduce [DGOS] \ Percolator [PD10]

A parallel batch processing incremental processing | | PowerDrill [HBB¥12]

datasiorage T > query Ul & columnar store

MegaStore [BBC*11] Spanner [CDE"13] Dremel [MGL*10] (_J

across-DC ACID database cross-DC multi-version DB A A columnar database

Y l - - - - - - - - - - - - - - - === === ="

v BigTable [CDG06]) I Dapper [SBB*10]
row-consistent multi-dimensional sparse mapy < F
Y

\ GFS/Colossus [GGLO03] ¥
distributed block store and file system

pervasive tracing

CPI? [ZTH*13]

interference mitigation A

coordination & cluster management

Chubby [Bur06] < Borg [VPK*15] and Omega [SKA*13] \

locking and coordination cluster manager and job scheduler

BORG

— Cluster manager and scheduler
— Tracks machine and task liveness

— Decides where to run what

— Consolidates workloads onto machines
— Efficiency gain, cost savings

— Need fewer clusters
— You might be more familiar with its successor:
kubernetes

44

BACKGROUND: CONTAINERS

https://hanwenzhang123.medium.com/docker-vs-virtual-machine-vs-kubernetes-overview-389db7de7618

CONTAINER 1 0
CONTAINER 2 0
CONTAINER 3 0

DOCKER Q-

VM VM
. y & —

-
\
.

(. - -

. J/
Y b o B B o enientent et O mE BE B G EE e ‘entent et o S mE mD
SERVER WITH SERVER WITH
VIRTUAL MACHINES DOCKER CONTAINERS

45

KUBERNETES ARCHITECTURE

:

l API server h

| Cloud

| pr ovider Cloud controller

l AP| manager @

| (optional) c-c-m

I Controller

I manager r—

I | etcd

I Node (persistence store) elod

| 0

I kubelet

I kubedet

{ kube-proxy .

K-proxy

|

i Scheduler

\h Control plane ——————-
Node

46

THE O\ Meta STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

parallel data processing monitoring tools

Hive [TSA™ 10]()Peregrine [MG12] | | Scuba [AAB"13] i UberTrace [CMF*14, §3]
SOL-on-MapReduce interactive querying in-memory database | pervasive tracing
A - = '
Y (Hadoop) MapReduce [DG08] | |Unicorn [CBB*13]| | | MysteryMachine [CMF*14]
A A parallel batch processing graph processing i performance modeling
—1- 4 - _CZ __ d o e e D e e e e o e e e e e e e e
atastorage I Haystack [BKL*10] | | TAO [BAC*13]| [Wormhole [SAA*15]
hot blob storage graph store , <> pub-sub replication A
A
Y HBase [BGS*11] ¥ f4 [MLR"*14] memcached [NFG*13] Y
multi-dimensional sparse map warm blob storage < >in-memory key-value store/cache
A
vy HDFS [SKR*10] MySQL Y YV Bistro [GSW15]
distributed block store and file system sharded ACID database cluster scheduler

47

THE O\ Meta STACK

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf

parallel data processing monitoring tools

Hive [TSA* 10]()Peregrine [MG12] | | Scuba [AAB™13] i UberTrace [CMF*14, §3]
SOL-on-MapReduce interactive querying in-memory database | pervasive tracing
A - = '
Y (Hadoop) MapReduce [DG08] | |Unicorn [CBB*13]| | | MysteryMachine [CMF*14]
A A parallel batch processing graph processing i performance modeling
—1- 4 - _CZ __ d o e e D e e e e o e e e e e e e e
atastorage “Haystack [BKL*10] | [TAO [BAC*13]| [Wormhole [SAA*15]
hot blob storage graph store , <> pub-sub replication A
A
Y HBase [BGS*11] ¥ f4 [MLR"*14] memcached [NFG*13] Y
multi-dimensional sparse map warm blob storage < >in-memory key-value store/cache
A
vy HDFS [SKR*10] MySQL Y YV Bistro [GSW15]
distributed block store and file system sharded ACID database cluster scheduler

48

HAYSTACK & F4

— Blob stores, hold photos, videos
— not: status updates, messages, like counts

— [tems have a level of hothess
— How many users are currently accessing this?

— Baseline “cold” storage: MySQL

— Want to cache close to users
— Reduces network traffic
— Reduces latency
— But cache capacity is limited!
— Replicate for performance, not resilience

49

What about
other companies’ stacks?

HOW ABOUT OTHER COMPANIES?

— Very similar stacks.
— Microsoft, Yahoo, Twitter all similar in principle.
— Typical set-up:
— Front-end serving systems and fast back-ends.
— Batch data processing systems.

— Multi-tier structured/unstructured storage hierarchy.
— Coordination system and cluster scheduler.

— Minor differences owed to business focus
— e.g., Amazon focused on inventory/shopping cart.

51

OPEN SOURCE SOFTWARE

— Lots of open-source implementations!
— MapReduce — Hadoop, Spark, Metis
— GFS = HDFS
— BigTable — HBase, Cassandra
— Borg = Mesos, Firmament
— Chubby — Zookeeper

— But also some releases from companies...

— Presto (Facebook)
— Kubernetes (Google Borg)

52

THE SparK® STACK

MLlib

Streaming User-friendly machine > ;SS,?L Hive Storm || MPI

learning

Java/Scala APIs) Hadoop MR

Tachyon pistri

[Hadoop Distributed File System (HDFS)]

MeSO0S Cluster resource manager, multi-tenanc

. Supported Release . In Development [:] Related External Project

53

NEWER STACKS

— Lots of new support for machine learning

— Google: Tensorflow, Tensorflow Serving, Tensorflow
Extended (TFX)

— Uber: Michelangelo

— Spark/Berkeley Data Stack (BDAS): MLBase, MLIib,
Clipper

54

HEWLETT-PACKARD (HP

https://community.hpe.com/t5/hpe-ezmeral-uncut/machine-ltearning-operationalization-in-the-enterprise/ba-p/7062451

HPE ML Ops 5l
Monitor
spoﬁé’ §g kafka. ,@ Q teor fata A quﬁ'g T TensorFlow spof'Y T TensorFlow m,oai
R @xnet - @,
Data Processing Sandbox Training Serving
Data Prep Build Train Deploy
Collaborate

BlueData EPIC platform

U

Y et (f et st o, g, e i (g g S o) 1
| ! . I
Compute | E==CPUs — GPUs 01 | ‘aWS,; PO
e — : — ,

| I
8 8 > 0O

STO ra g e N FS H D FS : = Google Cloud Platform :

On-Premises Public Cloud

55

MICROSOFT

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/idea/many-models-machine-learning-azure-machine-learning

Artificial Intelligence

Model d D kload Staqi e | Analytical Front-end
odel data ata workloa taging area | ..)
9ing | Training Inference I a workload
T T T T T T~ I | T T T T T | B ° 2 | T T T T T T T~ |
| | | I I | I I I
! | | | o QI Batch L | | |
| | [I I | == _____| I__________| I | ‘ | I |
| | | | | | | Creating Azure | | | | | I |
| 0/0!0 | | | I | Machine Learning | | | I | I I
! o] ! ! | Azure Data Lake ! | 1 pipelinesfor oy . ' Azure Data Lake ! | '
I 0o/0lO0 | I | L Training and | | | I | I
| . I I | Storage V2 | I Promotion || | | Storage V2 I | I
| Enterprise data Azure Data | | o L v Lo | | |
| : Factory 1| F o a | R 1 Powersl |
| |

| - — L—p - I L > S e e e - I L |
I I I I I I | eploy | I I I I
| | | | | R endpoint AT | | L e |
' | ! | I Azure Synapse | | | || I I Azure Synapse | I ‘ Q |
| | | - | | I Azure || Managed I | ! [< |
| ' | T ! ! e— Lo Machine || : | | — ! ' !
| 0/10!0 | | I : | endpoint I | L
| 101 |+ | Azure Stream : | : L Learning : | P : : | : | Web application :
: 0/i0!0 I : Analytics l : I : : | : | : l : l

. | I I I I | I I
Third-party				I		I	I			
metadata				AzureSQL		———=— ———ml e e '		Azure SQL		
				Database	a		Database			
b B b B b B : Near Real Time : Shmbn - b B

A\ Microsoft
Azure

56

MLOPS INFRASTRUCTURE & TOOLING

https://fullstackdeeplearning.com/spring2021/lecture-6/

a2)
O
radient V Y<DOMINO
r @AmazLSage_Maker gPaperspace ': H‘ O \ D l"//|\ DATA LAB
“All-in-one”
f N ff N\ - \N (f N[))
% scole & ‘F Weights & Biases 1 5a ~>
Hyperparameter Tuning Feature .
Pachydern LIQUIDATA (&Aq uarium \ W, 9 Store AR Monitoring y
ioni i ()
Lverswnng \ Labeling A PYT b RC H ’ Weights & Biases ’ comet g) (ALGORITHMIAw
f?‘ N () 0*} RAY TensorBoard é Nepfun? @ % SELDOW
< Framoworks & mif- IR | <5
Spoﬁ("‘{ _ Distributed Training | | Experiment Management) +° TensorFlowL ite .
@ DAGSTER % (o , N (R € ONNX .
dbt “% Determined Al . e Ed Web
kProcessing) kEprorationJ @y @ P jupyter Streamlit _ ge) L e Y
<[“ HHY ‘ & 4)
TR ~ H it Buildkite
A gy © databricks (g slurm N £ G vt ommion
Resource Management Software Engineering
Data Lake / Warehouse Cl / Testin
\. J \. J U y L g)
~) [s CW CoreWeave .
L
- (o) I : >
E= L D J | == A|Lambda ¢ O
7 Parquet ' or
9 Sources p L Compute ‘
Data Training/Evaluation Deployment
. J U J U y
_ W,

57

AllIE
[UNIVERSITY
JVIRGINIA

TAKEAWAYS

— Running at huge (10k+ machines) scale requires different software stacks.

— Pretty interesting systems and design challenges.
— try to read more papers! (e.g., BigTable, Spanner..)

— Emerging new support for ML workloads.
— Next class: Lab Day ll, Hack ZooKeeper

58

REFERENCES

—[1] Malte Schwartzkopf. "What does it take to make Google work at
scale”?" 2015.

—[2] Jeff Dean. "Software Engineering Advice from Building Large-
Scale Distributed Systems," 2007 .

—[3] Jeff Dean. "Building Software Systems at Google and Lessons
Learned,"” 2010.

— [4] Colin Scott. "Latency Numbers Every Programmer Should
Know."

59

AN

[UNIVERSITY
I\VIRGINIA

ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS
SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

