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The Google File System
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Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

SOSP 2003



WHY ARE WE READING THIS PAPER?
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– GFS paper touches on many themes of this course
– parallel performance, fault tolerance, replication, consistency

– good systems paper -- details from apps all the way to network

– successful real-world design



by William G. Griswold, CSE, UC San Diego
HOW TO READ AN ENGINEERING RESEARCH PAPER

– What are the motivations for this work? 
– What is the proposed solution? 
– What is the work's evaluation of the proposed solution? 
– What is your analysis of the identified problem, idea and evaluation?
– What are the contributions? 
– What are future directions for this research? 
– What questions are you left with? 
– What is your take-away message from this paper? 

https://cseweb.ucsd.edu//~wgg/CSE210/howtoread.html



MOTIVATION
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–   Many Google services 
needed a big fast unified 
storage system
– Mapreduce, crawler, indexer, 

log storage/analysis

–   Shared among multiple 
applications e.g. crawl, 
index, analyze

–   Capacity?
–   Performance?
–   Fault tolerance?
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GFS OVERVIEW
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–   100s/1000s of clients (e.g. MapReduce worker machines)
–   100s of chunkservers, each with its own disk
–   one coordinator



CAPACITY STORY?
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–   big files split into 64 MB chunks
–   each file's chunks striped/sharded over chunkservers

– so a file can be much larger than any one disk

–   each chunk in a Linux file



THROUGHPUT STORY?
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–   clients talk directly to chunkservers to read/write data
–   if lots of clients access different chunks, huge parallel throughput



FAULT TOLERANCE STORY?
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–   each 64 MB chunk stored (replicated) on three chunkservers
–   client writes are sent to all of a chunk's copies
–   a read just needs to consult one copy



Basic ops (read, write..)
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WHEN CLIENT C WANTS TO READ A FILE?
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–   1. C sends filename and offset to coordinator (CO) (if not cached)
–      CO has a filename -> array-of-chunkhandle table
–      and a chunkhandle -> list-of-chunkservers table
–   2. CO finds chunk handle for that offset
–   3. CO replies with chunkhandle + list of chunkservers
–   4. C caches handle + chunkserver list
–   5. C sends request to nearest chunkserver
–      chunk handle, offset
–   6. chunk server reads from chunk file on disk, returns to client



WHEN CLIENT C WANTS TO READ A FILE
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– Clients only ask coordinator where to find a file's chunks
– clients cache name -> chunkhandle info
– coordinator does not handle data, so (hopefully) not heavily loaded

– What about writes?
– Client knows which chunkservers hold replicas that must be updated.
– How should we manage updating of replicas of a chunk?



A BAD REPLICATION SCHEME
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–   Client sends update to each replica chunkserver
–   Each chunkserver applies the update to its copy

Client1 Server1

Server2



WHAT CAN GO WRONG?
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–   *Two* clients write the same data at the same time
– i.e. "concurrent writes"
–     Chunkservers may see the updates in different orders!
–     Again, the risk is that, later, two clients may read different content

Client1 Server1

Server2Client2



IDEA: PRIMARY/SECONDARY REPLICATION
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–   For each chunk, designate one server as "primary".
–   Clients send write requests just to the primary.

– The primary alone manages interactions with secondary servers.
–     (Some designs send reads just to primary, some also to secondaries)

–   The primary chooses the order for all client writes.
–     Tells the secondaries -- with sequence numbers -- so all replicas
–     apply writes in the same order, even for concurrent client writes.



WHEN C WANTS TO WRITE A FILE AT SOME OFFSET?
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–   1. C asks CO about file's chunk @ offset
–   2. CO tells C the primary and secondaries
–   3. C sends data to all (just temporary...), waits for all replies (?)
–   4. C asks P to write
–       P checks that lease (?) hasn't expired
–       P writes its own chunk file (a Linux file)
–   5. P tells each secondary to write 
–       (copy temporary into chunk file)
–   6. P waits for all secondaries to reply, or timeout
–      secondary can reply "error" e.g. out of disk space
–   7. P tells C "ok" or "error"
–       C retries from start if error



Consistency

23



GFS CONSISTENCY GUARANTEES
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–   somewhat complex!
–   if primary tells client that a write succeeded,

–     and no other client is writing the same part of the file,
–     all readers will see the write.
–     "defined"

–   if successful concurrent writes to the same part of a file,
–     and they all succeed, all readers will see the same content,
–     but maybe it will be a mix of the writes.
–     "consistent"
–     E.g. C1 writes "ab", C2 writes "xy", everyone might see "xb".

–   if primary doesn't tell the client that the write succeeded,
–    different readers may see different content, or none.
–     "inconsistent"



HOW CAN INCONSISTENT CONTENT ARISE?
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–   Primary P updated its own state.
–   But secondary S1 did not update (failed? slow? network 

problem?).
–   Client C1 reads from P; Client C2 reads from S1.

–     they will see different results!

–   Such a departure from ideal behavior is an "anomaly".
–   But note that in this case the primary would have returned

–     an error to the writing client.

Client1 Server1

Server2Client1



HOW CAN CONSISTENT BUT UNDEFINED ARISE?
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–   Clients break big writes into multiple small writes,
–   e.g. at chunk boundaries, and GFS may interleave

–     them if concurrent client writes.



WHY ARE THESE ANOMALIES OK?
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–   They only intended to support a certain subset of their own 
applications.
–     Written with knowledge of GFS's behavior.

–   Probably mostly single-writer and Record Append.
–   Writers could include checksums and record IDs.

–     Readers could use them to filter out junk and duplicates.

–   Later commentary by Google engineers suggests that it
–     might have been better to make GFS more consistent.
–     http://queue.acm.org/detail.cfm?id=1594206



WHAT MIGHT BETTER CONSISTENCY LOOK LIKE?
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–   There are many possible answers.
–   Trade-off between easy-to-use for client application programmers,

–     and easy-to-implement for storage system designers.

–   Maybe try to mimic local disk file behavior.
–   Perhaps:

–     * atomic writes: either all replicas are updated, or none, even if failures.
–     * read sees latest write.
–     * all readers see the same content (assuming no writes).



Fault Tolerance

29



A CLIENT CRASHES WHILE WRITING?
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–   Either it got as far as asking primary to write, or not.



A SECONDARY CRASHES JUST AS THE PRIMARY ASKS IT TO WRITE?
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–   1. Primary may retry a few times, if secondary revives quickly
–      with disk intact, it may execute the primary's request
–      and all is well.
–   2. Primary gives up, and returns an error to the client.
–      Client can retry -- but why would the write work the second 
–      time around?
–   3. Coordinator notices that a chunkserver is down.
–      Periodically pings all chunk servers.
–      Removes the failed chunkserver from all chunkhandle lists.
–      Perhaps re-replicates, to maintain 3 replicas.
–      Tells primary the new secondary list.



A SECONDARY CRASHES JUST AS THE PRIMARY ASKS IT TO WRITE?
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– Re-replication after a chunkserver failure may take a long time.
–   Since a chunkserver failure requires re-replication of all its chunks.
–   80 GB disk, 10 MB/s network -> an hour or two for full copy.
–   So the primary probably re-tries for a while,
–     and the coordinator lets the system operate with a missing
–     chunk replica, before declaring the chunkserver permanently dead.
–   How long to wait before re-replicating?
–     Too short: wasted copying work if chunkserver comes back to life.
–     Too long: more failures might destroy all copies of data.



WHAT IF A PRIMARY CRASHES?
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–   The coordinator must be able to designate a 
–      new primary if the present primary fails.
–   But the coordinator cannot distinguish "primary has failed"
–      from "primary is still alive but the network has a problem."
–   What if the coordinator designates a new primary 
–      while old one is active?

–     two active primaries!
–     C1 writes to P1, C2 reads from P2, doesn't seen C1's write!
–     called "split brain" -- a disaster



WHAT IF A PRIMARY CRASHES?

34

–   Solution: Lease
–   Permission to act as primary for a given time (60 seconds).
–   Primary promises to stop acting as primary before lease expires.
–   Coordinator promises not to change primaries until after expiration.
–   Separate lease per actively written chunk.

–   Leases help prevent split brain:
–     Coordinator won't designate new primary until the current one is
–     guaranteed to have stopped acting as primary.



WHAT IF A PRIMARY CRASHES?
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–   Remove that chunkserver from all chunkhandle lists.
–   For each chunk for which it was primary,

–     wait for lease to expire,
–     grant lease to another chunkserver holding that chunk.



WHAT IF THE COORDINATOR CRASHES?
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–   Two strategies.
–   1. Coordinator writes critical state to its disk.

–      If it crashes and reboots with disk intact,
–      re-reads state, resumes operations.

–   2. Coordinator sends each state update to a "backup coordinator",
–      which also records it to disk; backup coordinator can take
–      over if main coordinator cannot be restarted.



INFORMATION FOR PERSISTENCE
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–   Table mapping file name -> array of chunk handles.
–   Table mapping chunk handle -> current version #.
–   What about the list of chunkservers for each chunk?

–     A rebooted coordinator asks all the chunkservers what they store.

–   A rebooted coordinator must also wait one lease time before
–     designating any new primaries.



PERFORMANCE
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–   large aggregate throughput for read
–     94 MB/sec total for 16 clients + 16 chunkservers
–       or 6 MB/second per client
–       is that good?
–       one disk sequential throughput was about 30 MB/s
–       one NIC was about 10 MB/s
–     Close to saturating inter-switch link's 125 MB/sec (1 Gbit/sec)
–     So: multi-client scalability is good
–     Table 3 reports 500 MB/sec for production GFS, which was a lot

–   writes to different files lower than possible maximum
–     authors blame their network stack (but no detail)

–   hard to interpret after 15 years, e.g. how fast were the disks?



– Try HDFS(an open-source clone inspired by GFS)! 

WANNA PLAY WITH GFS YOURSELF?
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TAKEAWAYS
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–Case study of performance, fault-tolerance, consistency, specialized for MapReduce
–Good ideas:

– (1) global cluster file system as universal infrastructure (2) separation of naming (coordinator) from 
storage (chunkserver)(3) sharding for parallel throughput (4) huge files/chunks to reduce overheads 
(5) primary to choose order for concurrent writes (6) leases to prevent split-brain

–Not so great:
– (1) single coordinator performance (ran out of RAM and CPU) (2) chunkservers not very efficient for 

small files (3) lack of automatic fail-over to coordinator replica (4) maybe consistency was too relaxed

–Next class: ZooKeeper
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