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GUEST TALK

– Erci Xu serves as a research scientist at Alibaba Cloud Storage, where his primary focus lies 
in the development of distributed storage systems and the enhancement of both software 
and hardware reliability. He has authored multiple papers in top conferences such as 
USENIX OSDI, FAST, ATC, and ACM Eurosys. He is the recipient of two USENIX FAST Best 
Paper Awards (FAST'23 and FAST'24) and 2023 ACM SIGOPS China Rising Star Award.

– Block Store over the Cloud
–Speaker: Erci Xu, Alibaba Cloud
–Date&Location: 3/25, next Mon class



CONTEXT 
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– Today we talk about different levels of isolation and consistency
– and what are the tradeoffs

Isolation Consistency



CONTEXT 
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– Isolation: relevant only for transactional APIs. 
– Define how concurrent transactions interact with each other, i.e., whether individual 

effects of ongoing transactions can be witnessed by other transactions or not.

Isolation

txn1

txn2



CONTEXT
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– Consistency: relevant for both Tx and non-Tx APIs (our focus). 
– Constrain the order in which individual operations (or individual  

transactions for a Tx API) are witnessed by different readers. 

Consistency

op1 > op2

op2 > op1

?



CONTEXT
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– Why should you care about isolation and consistency?



CONTEXT
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– Why should you care about isolation and consistency?
– Together they provide correctness guarantees.
– Without them, a lot of weird stuff will happen!



IMAGINE A WORLD WITH NO ISOLATION 
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Never-Ending Ticket
 Sale!



IMAGINE A WORLD WITH NO CONSISTENCY 
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Some users see latest updates,
some users don't..



Isolation Semantics (a.k.a., 
Isolation Levels) 
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ISOLATION SEMANTICS 
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– Gold standard: serializability

– expensive!
– solution: provide other isolation levels that offer weaker semantics 

(and hence more corner cases to consider when programming 
against them) but better performance. 

– Downside?

– transactions are completely isolated from each other. 
– for this, the DB engine must serialize conflicting transactions.



BEST KNOWN ISOLATION LEVELS 
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– Serializability 
– Repeatable reads 
– Read committed 
– Read uncommitted 

– Anomaly will happen!



1. DIRTY READS
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– A dirty read (aka uncommitted dependency) occurs when a 
transaction retrieves a row that has been updated by another 
transaction that is not yet committed.



2. NON-REPEATABLE READS (FUZZY READS)
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– A non-repeatable read occurs when a transaction retrieves a row 
twice and that row is updated by another transaction that is 
committed in between.

Q: Difference with Dirty Read?
A: Uncommitted/Committed



3. PHANTOM READS
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– A phantom read occurs when a transaction retrieves a set of rows 
twice and new rows are inserted into or removed from that set by 
another transaction that is committed in between.

Q: Difference with Fuzzy Read?
A: Row/Set of rows



ISOLATION SEMANTICS 
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"READ UNCOMMITTED" == NO ISOLATION?
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– No, nearly all isolation levels prevent dirty writes
– Suppose T1 modifies x and T2 further modifies x before T1 commits or aborts. 

If either T1 or T2 aborts, it is unclear what the real value of x should be

Source: Morning paper



"READ UNCOMMITTED" == NO ISOLATION?
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– No, nearly all isolation levels prevent dirty writes
– Suppose T1 modifies x and T2 further modifies x before T1 commits or aborts. 

If either T1 or T2 aborts, it is unclear what the real value of x should be

“A Critique of ANSI SQL Isolation Levels,” Proc. ACM SIGMOD 95



HOW TO IMPLEMENT
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– Serializability:   
– Take r/w row-level and r range locks; keep them for entire transaction. 
– Ensures all conflicting, concurrent transactions are isolated from each other. 

– Repeatable reads: 
– Take r/w row-level locks, keep them for entire transaction. Do not take r range 

locks at all. 
– Ensures that all row-level reads are repeatable. 
– Anomalies: phantom reads (concurrent Tx adds/removes row  

relevant to another transaction’s range query). 



HOW TO IMPLEMENT
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– Read committed:    
– Take w row-level locks, keep them for entire transaction. Take r row-level locks, keep them only 

while row is read. No range locks. 
– Ensures that only committed updates are read. 
– Anomalies: phantom reads + non-repeatable reads (you may read a row that’s being updated by 

another concurrent transaction, so depending on when you read that, the output may be different).  

– Read uncommitted:  
– Take w row-level locks, keep them for entire transaction. No r locks, row-level or range-level. 
– Ensures that rows are atomically written. 
– Anomalies: phantom reads + non-repeatable reads + dirty reads (you may read a write of an in-

process transaction that may ultimately be aborted). 
– why still use it: performance + debugging long queries



COMPARISONS 
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– Anomalies make it harder and harder for programmers to reason 
about behavior of DB.  

– But less synchronization leads to better performance (this is true 
even in lockless implementations).  

– Typically, default in commercial databases (e.g., Oracle, SQL 
Server, PostgreSQL, MySQL) is read committed. 



Consistency Semantics (a.k.a. 
Consistency Models) 
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CONSISTENCY SEMANTICS 
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– Gold standard is linearizability: operations are seen in the real 
time order in which they are “committed” (finished). For this, the 
storage system must coordinate among replicas/shards, wait out 
clock uncertainty, etc. -- all of which can be very expensive. 

– Other consistency models exist that offer weaker semantics (and 
hence more corner cases to consider when programming against 
them) but better performance, scalability, and sometimes 
availability. 



CONSISTENCY SEMANTICS 
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– What can go wrong?



1. THE STALE READ
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– A stale read is when a read operation does not return the most 
recent value. 

– The user has $2000 in his account. Now he transfers $1000 to his 
children and he still sees $2000 in his account. 

Web FE

DB

Network

Web FE Web FE

CachCach Cach

DB DBDBDB DBDB DBDB



2. THE IMMORTAL WRITE
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– The user wants to change his username from ‘Hans’ to ‘Peter’, but 
changes to ‘Peteeer’ instead. 

– The user corrects the username to ‘Peteeer’. The next time the 
user logs in to online banking, however, he see the username 
‘Peteeer’ again. 



3. THE CAUSAL REVERSE
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– Now the user wants to transfer $30,000 from his savings account 
to his bank account. In his savings account he has exactly the 
$30,000 and in his bank account he has $1,000, but after the 
transfer he will see a total of $61,000 in his accounts.



BEST KNOWN CONSISTENCY MODELS 
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– Strict consistency 
– Linearizability 
– Sequential consistency 
– Causal consistency 
– Eventual consistency 

– Variations boil down to: (1) the allowable staleness of reads and (2) 
the ordering of writes across all replicas. 



EXAMPLES WITH REPLICATED DISTRIBUTED SHARED MEMORY (DSM) 
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– Distributed shared 
memory (DSM): a form 
of memory architecture where 
physically separated memories 
can be addressed as a single 
shared address space.

– In the slides, we will use 
individual examples to show 
what’s admissible vs. not for a 
given semantic. 



STRUCTURE OF AN EXAMPLE 
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STRICT CONSISTENCY 
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– Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued. 

– Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes. 

if DSM is strictly 
consistent, what can 
these reads return? 



STRICT CONSISTENCY 
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– Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued. 

– Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes. 



STRICT CONSISTENCY 
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– Defn: Any execution is the same as if all read/write ops were 
executed in order of physical time at which they were issued. 

– Therefore: (1) Reads are never stale; (2) all replicas enforce 
physical-time ordering for all writes. 

CORRECT WRONG



STRICT CONSISTENCY 
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– However, strict consistency isn't implementable.. 
– Why?



STRICT CONSISTENCY 
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– However, strict consistency isn't implementable.. 
– Why?
– instantaneous message exchange is impossible
– a thought experiment and formalism



LINEARIZABILITY 
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– Defn: Any execution is the same as if all read/write ops were executed in 
some global order s.t. any read returns the value of the most recent 
completed write at that location. 

– Therefore: (1) Once a write completes, all later reads return the value of that 
write or of a later write. (2) Once a read returns a value, all later reads return 
that value or value of a later write. 

if DSM is strictly 
linearizable, what can 
these reads return? 



LINEARIZABILITY 
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LINEARIZABILITY 
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CORRECT WRONG

CORRECT CORRECT
These are also strictly consistent These aren’t strictly consistent



SEQUENTIAL CONSISTENCY  
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– Defn: Any execution is the same as if all read/write ops were executed in 
some global order, and the ops of each client process appear in the order 
specified by its program. (This global order that adheres to program order is 
called global sequential order.) 

– Therefore: (1) Reads may be stale in real time, but not in logical time; (2) 
Writes are totally ordered according to logical time across all replicas. 

if DSM is strictly 
sequentially consistent, 
what can these reads 
return? 



SEQUENTIAL CONSISTENCY  
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– Defn: Any execution is the same as if all read/write ops were executed in some global 
order, and the ops of each client process appear in the order specified by its program. 
(This global order that adheres to program order is called global sequential order.)

What’s a global sequential order 
that can explain these results? 

physical-time ordering 

What’s a global sequential order 
that can explain these results? 

w(x)a, r(x)a, w(x)b, r(x)b, ... 

CORRECT CORRECT

This was also linearizable This wasn’t linearizable 



SEQUENTIAL CONSISTENCY  
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– Defn: Any execution is the same as if all read/write ops were executed in some global 
order, and the ops of each client process appear in the order specified by its program. 
(This global order that adheres to program order is called global sequential order.)

No global order can explain 
these results... 

=> not seq. consistent 

No global sequential order can 
explain results. 

E.g.: the following global order 
doesn’t preserve P1’s ordering: 

w(x)c, r(x)c, w(x)a, r(x)a, w(x)b, ... 

WRONG WRONG



CAUSAL CONSISTENCY 
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– Defn: Any execution is the same as if all causally-related read/write 
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders. 

– Therefore: (1) Reads are fresh only w.r.t. the writes that they are  
causally dependent on; (2) Only causally-related writes are ordered by 
all replicas in the same way, but concurrent writes may be committed 
in different orders by different replicas, and hence read in different 
orders by different applications. 

– Sound Strange? Think about Twitter Timeline.



CAUSAL CONSISTENCY 
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– Defn: Any execution is the same as if all causally-related read/write 
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders. 

Only per-process ordering restrictions: 
w(x)b < r(x)b; r(x)b < r(x)a; ... w(x)a || 

w(x)b, hence they can be seen 

This wasn’t sequentially consistent. 

Having read c (r(x)c), P3 must continue 
to read c or some newer value 
(perhaps b), but can’t go back 

to a, b/c w(x)c was conditional upon 
w(x)a having finished. 

CORRECT WRONG



CAUSAL CONSISTENCY 
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– Defn: Any execution is the same as if all causally-related read/write 
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders. 

w(x)b is causally-related on r(x)a, 
which is causally-related on w(x)a. 
Therefore, system must enforce 

w(x)a < w(x)b ordering. 
But P3 violates that ordering, b/c it 

reads a after reading b. 

WRONG



WHY CAUSAL CONSISTENCY? 
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– Causal consistency is strictly weaker than sequential consistency 
and can give weird results, as you’ve seen. 

– BUT: it also requires less coordination, hence better performance. 
– Note that in causally consistent systems, you don't actually ever 

have inversions of concurrent updates on the same object, it's very 
easy and efficient to prevent that.  
– But concurrent updates on different objects (e.g., w(x)5 || w(y)7) can be seen in 

different orders by different replicas.  



EVENTUAL CONSISTENCY (OPTIONAL)
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– Allow stale reads, but ensure that reads will eventually reflect 
previously written values, even after a long time. 

– Doesn’t order writes as they are executed, which might create 
conflicts later: which write was first? 

– Used in Amazon’s Dynamo, a key/value store  
– Plus a lot of academic systems
– Plus file synchronization
– Plus source control systems like... git! 
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TAKEAWAYS
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– Different isolation and consistency levels have different tradeoffs
– When using weaker isolation+consistency... fun begins ☺

– Last class in "Fundamentals" section, from next week: "Real-world Cloud"
– Next class: Guest talk from Alibaba Cloud
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