
CS4740
CLOUD COMPUTING

Isolation and Consistency

Prof. Chang Lou, UVA CS, Spring 2024

1

2

GUEST TALK

– Erci Xu serves as a research scientist at Alibaba Cloud Storage, where his primary focus lies
in the development of distributed storage systems and the enhancement of both software
and hardware reliability. He has authored multiple papers in top conferences such as
USENIX OSDI, FAST, ATC, and ACM Eurosys. He is the recipient of two USENIX FAST Best
Paper Awards (FAST'23 and FAST'24) and 2023 ACM SIGOPS China Rising Star Award.

– Block Store over the Cloud
–Speaker: Erci Xu, Alibaba Cloud
–Date&Location: 3/25, next Mon class

CONTEXT

3

– Today we talk about different levels of isolation and consistency
– and what are the tradeoffs

Isolation Consistency

CONTEXT

4

– Isolation: relevant only for transactional APIs.
– Define how concurrent transactions interact with each other, i.e., whether individual

effects of ongoing transactions can be witnessed by other transactions or not.

Isolation

txn1

txn2

CONTEXT

5

– Consistency: relevant for both Tx and non-Tx APIs (our focus).
– Constrain the order in which individual operations (or individual  

transactions for a Tx API) are witnessed by different readers.

Consistency

op1 > op2

op2 > op1

?

CONTEXT

6

– Why should you care about isolation and consistency?

CONTEXT

7

– Why should you care about isolation and consistency?
– Together they provide correctness guarantees.
– Without them, a lot of weird stuff will happen!

IMAGINE A WORLD WITH NO ISOLATION

8

Never-Ending Ticket
 Sale!

IMAGINE A WORLD WITH NO CONSISTENCY

9

Some users see latest updates,
some users don't..

Isolation Semantics (a.k.a.,
Isolation Levels)

10

ISOLATION SEMANTICS

11

– Gold standard: serializability

– expensive!
– solution: provide other isolation levels that offer weaker semantics

(and hence more corner cases to consider when programming
against them) but better performance.

– Downside?

– transactions are completely isolated from each other.
– for this, the DB engine must serialize conflicting transactions.

BEST KNOWN ISOLATION LEVELS

12

– Serializability
– Repeatable reads
– Read committed
– Read uncommitted

– Anomaly will happen!

1. DIRTY READS

13

– A dirty read (aka uncommitted dependency) occurs when a
transaction retrieves a row that has been updated by another
transaction that is not yet committed.

2. NON-REPEATABLE READS (FUZZY READS)

14

– A non-repeatable read occurs when a transaction retrieves a row
twice and that row is updated by another transaction that is
committed in between.

Q: Difference with Dirty Read?
A: Uncommitted/Committed

3. PHANTOM READS

15

– A phantom read occurs when a transaction retrieves a set of rows
twice and new rows are inserted into or removed from that set by
another transaction that is committed in between.

Q: Difference with Fuzzy Read?
A: Row/Set of rows

ISOLATION SEMANTICS

16

"READ UNCOMMITTED" == NO ISOLATION?

17

– No, nearly all isolation levels prevent dirty writes
– Suppose T1 modifies x and T2 further modifies x before T1 commits or aborts.

If either T1 or T2 aborts, it is unclear what the real value of x should be

Source: Morning paper

"READ UNCOMMITTED" == NO ISOLATION?

18

– No, nearly all isolation levels prevent dirty writes
– Suppose T1 modifies x and T2 further modifies x before T1 commits or aborts.

If either T1 or T2 aborts, it is unclear what the real value of x should be

“A Critique of ANSI SQL Isolation Levels,” Proc. ACM SIGMOD 95

HOW TO IMPLEMENT

19

– Serializability:
– Take r/w row-level and r range locks; keep them for entire transaction.
– Ensures all conflicting, concurrent transactions are isolated from each other.

– Repeatable reads:
– Take r/w row-level locks, keep them for entire transaction. Do not take r range

locks at all.
– Ensures that all row-level reads are repeatable.
– Anomalies: phantom reads (concurrent Tx adds/removes row  

relevant to another transaction’s range query).

HOW TO IMPLEMENT

20

– Read committed:
– Take w row-level locks, keep them for entire transaction. Take r row-level locks, keep them only

while row is read. No range locks.
– Ensures that only committed updates are read.
– Anomalies: phantom reads + non-repeatable reads (you may read a row that’s being updated by

another concurrent transaction, so depending on when you read that, the output may be different).

– Read uncommitted:
– Take w row-level locks, keep them for entire transaction. No r locks, row-level or range-level.
– Ensures that rows are atomically written.
– Anomalies: phantom reads + non-repeatable reads + dirty reads (you may read a write of an in-

process transaction that may ultimately be aborted).
– why still use it: performance + debugging long queries

COMPARISONS

21

– Anomalies make it harder and harder for programmers to reason
about behavior of DB.  

– But less synchronization leads to better performance (this is true
even in lockless implementations).  

– Typically, default in commercial databases (e.g., Oracle, SQL
Server, PostgreSQL, MySQL) is read committed.

Consistency Semantics (a.k.a.
Consistency Models)

22

CONSISTENCY SEMANTICS

23

– Gold standard is linearizability: operations are seen in the real
time order in which they are “committed” (finished). For this, the
storage system must coordinate among replicas/shards, wait out
clock uncertainty, etc. -- all of which can be very expensive.

– Other consistency models exist that offer weaker semantics (and
hence more corner cases to consider when programming against
them) but better performance, scalability, and sometimes
availability.

CONSISTENCY SEMANTICS

24

– What can go wrong?

1. THE STALE READ

25

– A stale read is when a read operation does not return the most
recent value.

– The user has $2000 in his account. Now he transfers $1000 to his
children and he still sees $2000 in his account.

Web FE

DB

Network

Web FE Web FE

CachCach Cach

DB DBDBDB DBDB DBDB

2. THE IMMORTAL WRITE

26

– The user wants to change his username from ‘Hans’ to ‘Peter’, but
changes to ‘Peteeer’ instead.

– The user corrects the username to ‘Peteeer’. The next time the
user logs in to online banking, however, he see the username
‘Peteeer’ again.

3. THE CAUSAL REVERSE

27

– Now the user wants to transfer $30,000 from his savings account
to his bank account. In his savings account he has exactly the
$30,000 and in his bank account he has $1,000, but after the
transfer he will see a total of $61,000 in his accounts.

BEST KNOWN CONSISTENCY MODELS

28

– Strict consistency
– Linearizability
– Sequential consistency
– Causal consistency
– Eventual consistency

– Variations boil down to: (1) the allowable staleness of reads and (2)
the ordering of writes across all replicas.

EXAMPLES WITH REPLICATED DISTRIBUTED SHARED MEMORY (DSM)

29

– Distributed shared
memory (DSM): a form
of memory architecture where
physically separated memories
can be addressed as a single
shared address space.

– In the slides, we will use
individual examples to show
what’s admissible vs. not for a
given semantic.

STRUCTURE OF AN EXAMPLE

30

STRICT CONSISTENCY

31

– Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

– Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

if DSM is strictly
consistent, what can
these reads return?

STRICT CONSISTENCY

32

– Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

– Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

STRICT CONSISTENCY

33

– Defn: Any execution is the same as if all read/write ops were
executed in order of physical time at which they were issued.

– Therefore: (1) Reads are never stale; (2) all replicas enforce
physical-time ordering for all writes.

CORRECT WRONG

STRICT CONSISTENCY

34

– However, strict consistency isn't implementable..
– Why?

STRICT CONSISTENCY

35

– However, strict consistency isn't implementable..
– Why?
– instantaneous message exchange is impossible
– a thought experiment and formalism

LINEARIZABILITY

36

– Defn: Any execution is the same as if all read/write ops were executed in
some global order s.t. any read returns the value of the most recent
completed write at that location.

– Therefore: (1) Once a write completes, all later reads return the value of that
write or of a later write. (2) Once a read returns a value, all later reads return
that value or value of a later write.

if DSM is strictly
linearizable, what can
these reads return?

LINEARIZABILITY

37

LINEARIZABILITY

38

CORRECT WRONG

CORRECT CORRECT
These are also strictly consistent These aren’t strictly consistent

SEQUENTIAL CONSISTENCY

39

– Defn: Any execution is the same as if all read/write ops were executed in
some global order, and the ops of each client process appear in the order
specified by its program. (This global order that adheres to program order is
called global sequential order.)

– Therefore: (1) Reads may be stale in real time, but not in logical time; (2)
Writes are totally ordered according to logical time across all replicas.

if DSM is strictly
sequentially consistent,
what can these reads
return?

SEQUENTIAL CONSISTENCY

40

– Defn: Any execution is the same as if all read/write ops were executed in some global
order, and the ops of each client process appear in the order specified by its program.
(This global order that adheres to program order is called global sequential order.)

What’s a global sequential order
that can explain these results?

physical-time ordering

What’s a global sequential order
that can explain these results?

w(x)a, r(x)a, w(x)b, r(x)b, ...

CORRECT CORRECT

This was also linearizable This wasn’t linearizable

SEQUENTIAL CONSISTENCY

41

– Defn: Any execution is the same as if all read/write ops were executed in some global
order, and the ops of each client process appear in the order specified by its program.
(This global order that adheres to program order is called global sequential order.)

No global order can explain
these results...

=> not seq. consistent

No global sequential order can
explain results. 

E.g.: the following global order
doesn’t preserve P1’s ordering:

w(x)c, r(x)c, w(x)a, r(x)a, w(x)b, ...

WRONG WRONG

CAUSAL CONSISTENCY

42

– Defn: Any execution is the same as if all causally-related read/write
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders.

– Therefore: (1) Reads are fresh only w.r.t. the writes that they are  
causally dependent on; (2) Only causally-related writes are ordered by
all replicas in the same way, but concurrent writes may be committed
in different orders by different replicas, and hence read in different
orders by different applications.

– Sound Strange? Think about Twitter Timeline.

CAUSAL CONSISTENCY

43

– Defn: Any execution is the same as if all causally-related read/write
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders.

Only per-process ordering restrictions:
w(x)b < r(x)b; r(x)b < r(x)a; ... w(x)a ||

w(x)b, hence they can be seen

This wasn’t sequentially consistent.

Having read c (r(x)c), P3 must continue
to read c or some newer value
(perhaps b), but can’t go back

to a, b/c w(x)c was conditional upon
w(x)a having finished.

CORRECT WRONG

CAUSAL CONSISTENCY

44

– Defn: Any execution is the same as if all causally-related read/write
ops were executed in an order that reflects their causality.  
– All concurrent ops may be seen in different orders.

w(x)b is causally-related on r(x)a,
which is causally-related on w(x)a. 
Therefore, system must enforce

w(x)a < w(x)b ordering.
But P3 violates that ordering, b/c it

reads a after reading b.

WRONG

WHY CAUSAL CONSISTENCY?

45

– Causal consistency is strictly weaker than sequential consistency
and can give weird results, as you’ve seen.

– BUT: it also requires less coordination, hence better performance.
– Note that in causally consistent systems, you don't actually ever

have inversions of concurrent updates on the same object, it's very
easy and efficient to prevent that.
– But concurrent updates on different objects (e.g., w(x)5 || w(y)7) can be seen in

different orders by different replicas.

EVENTUAL CONSISTENCY (OPTIONAL)

46

– Allow stale reads, but ensure that reads will eventually reflect
previously written values, even after a long time.

– Doesn’t order writes as they are executed, which might create
conflicts later: which write was first?

– Used in Amazon’s Dynamo, a key/value store
– Plus a lot of academic systems
– Plus file synchronization
– Plus source control systems like... git!

47

TAKEAWAYS

48

– Different isolation and consistency levels have different tradeoffs
– When using weaker isolation+consistency... fun begins ☺

– Last class in "Fundamentals" section, from next week: "Real-world Cloud"
– Next class: Guest talk from Alibaba Cloud

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS SLIDES INCLUDES CONTENTS FROM BLOG: HTTPS://BLOG.MI.HDM-
STUTTGART.DE/INDEX.PHP/2020/03/06/ISOLATION-AND-CONSISTENCY-IN-DATABASES/

