
CS4740
CLOUD COMPUTING

Agreement

Prof. Chang Lou, UVA CS, Fall 2025

1

AGREEMENT

2

– A set of nodes in a DS often need to agree on something: a
decision, the value of a variable, order of events,...

– Example: ATM machine
–ATM front-end and banking service need to agree on whether to commit or

abort my cash withdrawal.

GAME: GREEN CUP, RED CUP

3

– Three students stand in a line
–Cup on the head decides the role. Green: Leader, Red: Follower
–Can only see the color of cups in front of them
–Cannot talk with each other or turn around
–Cannot move in the first 30 seconds

– Win: Leader gives me a high-five within one minute after start.
– Lose: Leader didn't give me a high-five in time, or followers take

moves instead
– Can you design a protocol to win?

TWO TYPES OF AGREEMENT

4

– Consensus: participants need to agree on a value, but they are
willing and capable to accept any value.

– Atomic commitment: participants need to agree on a value, but
they have specific constraints on whether they can accept any
particular value.

– Give some examples?

QUIZ

5

– Answer:
–Decision of when to meet is likely an atomic commitment problem.
–Decision of which zoom link to meet at is likely a consensus problem.

– Question:
–Decision of when to meet is likely ??? problem.
–Decision of which zoom link to meet at is likely ??? problem.

EXAMPLES – WHICH TYPE IS EACH?

6

– Lamport’s distributed mutual exclusion protocol: nodes  
agree on who has the lock at any time. ← ???

– ATM example from RPC lecture: ATM front-end and banking
service need to agree on whether to commit or abort my cash
withdrawal. ← ???

– In Lab1, you design a MapReduce system that all workers agree
whether they are in the map or reduce phase. ← ???

EXAMPLES – WHICH TYPE IS EACH?

7

– Lamport’s distributed mutual exclusion protocol: nodes  
agree on who has the lock at any time. ← Consensus

– ATM example from RPC lecture: ATM front-end and banking
service need to agree on whether to commit or abort my cash
withdrawal. ← Atomic commitment

– In Lab1, you design a MapReduce system that all workers agree
whether they are in the map or reduce phase. ← Consensus

AGREEMENT IS “HARD”

8

– In the asynchronous system model, it is impossible to  
guarantee agreement in finite time under all failure scenarios.

– The consensus problem can be approached in practice: there exist
protocols to solve consensus under vast majority of plausible
failure scenarios.

– That’s not the case for atomic commitment: if each participant has
their own constraints, then you can’t tolerate any one participant’s
failure.

– In that sense, atomic commitment is “even harder” than consensus.

REMAINDER OF THIS CLASS

9

– Focus on two "impossibilities":
–FLP: impossible to have deterministic one-crash-robust consensus with

asynchronous communication
–CAP: impossible to achieve consistency, availability and partition-tolerance all

Fischer, Lynch, and Paterson (FLP), 1985
THE FLP IMPOSSIBILITY RESULT

10

– In an asynchronous system (unordered messages, unbounded
communication delays, unbounded processing delays), no protocol
can guarantee consensus within a finite amount of time if even a single
process can fail by stopping. [FLP-1985]

THE TWO-GENERALS PROBLEM

11

– Two armies, A1 and A2, want to
attack a fortified city, B.

– Both armies must attack at the
same time to succeed.

– The armies can communicate
through messengers, but those
can be captured or delayed, so
msg. delivery is unreliable.

THE TWO-GENERALS PROBLEM

12

– Three requirements for a
solution:
–Consistency: both armies decide to

attack at the same time.
–Termination: each army decides to

attack after a finite number of
messages.

–Validity: the time to attack was
proposed by one of the armies.

CASE 1: KNOWN DELAYS, RELIABLE DELIVERY (SYNCHRONOUS SYSTEM
MODEL)

13

– Protocol:
–Pre-agree on either A1 or A2 generals

proposing the time to attack. Say A1 is
the one to propose. A2 will be the one
to accept.

–A1 sets the time of attack to
communication delay + some extra
time to account for A2’s preparation for
response.

•So problem is solvable in synchronous networks.

CASE 2: UNKNOWN DELAYS / UNRELIABLE DELIVERY (ASYNCHRONOUS
SYSTEM MODEL)

14

– Sketch:
–Need Acks in the protocol.
–But Acks can be delayed/lost too.
–Therefore I need more Acks.
–Therefore, one general can never be sure

the other will attack.
–So they can’t be guaranteed to reach

agreement.

– Achieving consistency, termination,
and validity in the asynchronous model
is provably impossible.

CONSENSUS PROBLEM FORMULATION

15

– A collection of processes, Pi.
– They propose values Vi (e.g., time to attack, client

update, lock requests, ...), and send messages to
others to exchange proposals.

– Different processes may propose different values,
and they can all accept any of the proposed values.

– Only one of the proposed values, V, will be
“chosen” and eventually all processes learn that
one chosen value.

CONSENSUS PROBLEM FORMULATION

16

– A collection of processes, Pi.
– They propose values Vi (e.g., time to attack, client

update, lock requests, ...), and send messages to
others to exchange proposals.

– Different processes may propose different values,
and they can all accept any of the proposed values.

– Only one of the proposed values, V, will be
“chosen” and eventually all processes learn that
one chosen value.

CONSENSUS PROBLEM FORMULATION

17

– Three requirements for a solution:
–consistency:

CONSENSUS PROBLEM FORMULATION

18

– Three requirements for a solution:
–consistency: once a value is chosen, the chosen value of all working processes

is the same.
– termination:

CONSENSUS PROBLEM FORMULATION

19

– Three requirements for a solution:
–consistency: once a value is chosen, the chosen value of all working processes

is the same.
– termination: eventually they agree on a value (a.k.a., a value is “chosen”).
–validity:

CONSENSUS PROBLEM FORMULATION

20

– Three requirements for a solution:
–consistency: once a value is chosen, the chosen value of all working processes

is the same.
– termination: eventually they agree on a value (a.k.a., a value is “chosen”).
–validity: the chosen value was proposed by one of the nodes.

CONSENSUS IS IMPOSSIBLE

21

– But, we achieve consensus all the time…

FLP’S STRONG ASSUMPTIONS

22

– Deterministic actions at each node
–Randomized algorithms can achieve consensus

– Asynchronous network communication
–Synchronous or even partial synchrony is sufficient

– All “runs” must eventually achieve consensus
–In practice, many “runs” achieve consensus quickly
– In practice, “runs” that never achieve consensus happen vanishingly rarely
–Both are true with good system designs

CONSENSUS IS PERVASIVE IN DS

23

– Agreeing on order of updates to replicated DB.
–One solution is primary/secondaries replication
–There are several replicas, one is primary.
–Reads and writes are accepted only by primary, which

establishes an order for all operations before
forwarding them to secondaries.

–Multiple variants exist, but they all reduce 
to one core consensus question: how to choose the
primary? A.k.a. leader election.

IMPOSSIBILITY #2

24

– Reaching an agreement, when there's a partition

NETWORK PARTITIONS DIVIDE SYSTEMS

25

FUNDAMENTAL TRADEOFF?

26

– Replicas appear to be a single machine, but lose availability during a
network partition

– or
– All replicas remain available during a network partition but do not

appear to be a single machine

CAP THEOREM PREVIEW

27

– You cannot achieve all three of:
–Consistency
–Availability
–Partition-Tolerance

– Partition Tolerance => Partitions Can Happen
– Availability => All Sides of Partition Continue
– Consistency => Replicas Act Like Single Machine

–Specifically, Linearizability

CAP THEOREM

28

– Assume to contradict that Algorithm A provides all of CAP

CAP THEOREM

29

– Assume to contradict that Algorithm A provides all of CAP

CAP THEOREM

30

– Assume to contradict that Algorithm A provides all of CAP

CAP THEOREM

31

– Assume to contradict that Algorithm A provides all of CAP

CAP CONJECTURE

32

– Popular interpretation: 2-out-of-3

CAP INTERPRETATION PART 1

33

– Cannot “choose” no partitions
–2-out-of-3 interpretation doesn’t make sense
–Instead, availability OR consistency?

– That is: Fundamental tradeoff between availability and consistency
–When designing system must choose one or the other, both are not possible

CAP INTERPRETATION PART 2

34

– It is a theorem, with a proof, that you understand!
– Cannot “beat” CAP Theorem
– Can engineer systems to make partitions extremely rare, however, and

then just take the rare hit to availability (or consistency)

TAKEAWAYS

35

– Impossibility results are very useful
–Avoids wasting effort trying to achieve impossible
–Tells us the best-possible systems we can build!

– Today: two "impossiblilities"
–FLP: async systems, infinite time
–CAP: consistency, availability, partition-tolerance

– Next class: Two-phase Commit (2PC)

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

