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AGREEMENT 
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– A set of nodes in a DS often need to agree on something: a 
decision, the value of a variable, order of events,... 

– Example: ATM machine 
–ATM front-end and banking service need to agree on whether to commit or 

abort my cash withdrawal. 



GAME: GREEN CUP, RED CUP
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– Three students stand in a line
–Cup on the head decides the role. Green: Leader, Red: Follower
–Can only see the color of cups in front of them
–Cannot talk with each other or turn around
–Cannot move in the first 30 seconds

– Win: Leader gives me a high-five within one minute after start.
– Lose: Leader didn't give me a high-five in time, or followers take 

moves instead 
– Can you design a protocol to win?



TWO TYPES OF AGREEMENT 
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– Consensus: participants need to agree on a value, but they are 
willing and capable to accept any value. 

– Atomic commitment: participants need to agree on a value, but 
they have specific constraints on whether they can accept any 
particular value. 

– Give some examples?



QUIZ
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– Answer:
–Decision of when to meet is likely an atomic commitment problem. 
–Decision of which zoom link to meet at is likely a consensus problem. 

– Question:
–Decision of when to meet is likely ??? problem. 
–Decision of which zoom link to meet at is likely ??? problem. 



EXAMPLES – WHICH TYPE IS EACH? 
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– Lamport’s distributed mutual exclusion protocol: nodes  
agree on who has the lock at any time. ← ??? 

– ATM example from RPC lecture: ATM front-end and banking 
service need to agree on whether to commit or abort my cash 
withdrawal. ← ??? 

– In Lab1, you design a MapReduce system that all workers agree 
whether they are in the map or reduce phase. ← ??? 



EXAMPLES – WHICH TYPE IS EACH? 
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– Lamport’s distributed mutual exclusion protocol: nodes  
agree on who has the lock at any time. ← Consensus  

– ATM example from RPC lecture: ATM front-end and banking 
service need to agree on whether to commit or abort my cash 
withdrawal. ← Atomic commitment  

– In Lab1, you design a MapReduce system that all workers agree 
whether they are in the map or reduce phase. ← Consensus 



AGREEMENT IS “HARD” 
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– In the asynchronous system model, it is impossible to  
guarantee agreement in finite time under all failure scenarios. 

– The consensus problem can be approached in practice: there exist 
protocols to solve consensus under vast majority of plausible 
failure scenarios. 

– That’s not the case for atomic commitment: if each participant has 
their own constraints, then you can’t tolerate any one participant’s 
failure. 

– In that sense, atomic commitment is “even harder” than consensus. 



REMAINDER OF THIS CLASS 
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– Focus on two "impossibilities": 
–FLP: impossible to have deterministic one-crash-robust consensus with 

asynchronous communication
–CAP: impossible to achieve consistency, availability and partition-tolerance all



Fischer, Lynch, and Paterson (FLP), 1985
THE FLP IMPOSSIBILITY RESULT 
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– In an asynchronous system (unordered messages, unbounded 
communication delays, unbounded processing delays), no protocol 
can guarantee consensus within a finite amount of time if even a single 
process can fail by stopping. [FLP-1985] 



THE TWO-GENERALS PROBLEM 
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– Two armies, A1 and A2, want to 
attack a fortified city, B. 

– Both armies must attack at the 
same time to succeed. 

– The armies can communicate 
through messengers, but those 
can be captured or delayed, so 
msg. delivery is unreliable. 



THE TWO-GENERALS PROBLEM 
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– Three requirements for a 
solution: 
–Consistency: both armies decide to 

attack at the same time. 
–Termination: each army decides to 

attack after a finite number of 
messages. 

–Validity: the time to attack was 
proposed by one of the armies. 



CASE 1: KNOWN DELAYS, RELIABLE DELIVERY (SYNCHRONOUS SYSTEM 
MODEL) 
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– Protocol: 
–Pre-agree on either A1 or A2 generals 

proposing the time to attack. Say A1 is 
the one to propose. A2 will be the one 
to accept. 

–A1 sets the time of attack to 
communication delay + some extra 
time to account for A2’s preparation for 
response. 

•So problem is solvable in synchronous networks. 



CASE 2: UNKNOWN DELAYS / UNRELIABLE DELIVERY (ASYNCHRONOUS 
SYSTEM MODEL) 
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– Sketch: 
–Need Acks in the protocol. 
–But Acks can be delayed/lost too. 
–Therefore I need more Acks. 
–Therefore, one general can never be sure 

the other will attack. 
–So they can’t be guaranteed to reach 

agreement. 

– Achieving consistency, termination, 
and validity in the asynchronous model 
is provably impossible. 



CONSENSUS PROBLEM FORMULATION 
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– A collection of processes, Pi. 
– They propose values Vi (e.g., time to attack, client 

update, lock requests, ...), and send messages to 
others to exchange proposals. 

– Different processes may propose different values, 
and they can all accept any of the proposed values. 

– Only one of the proposed values, V, will be 
“chosen” and eventually all processes learn that 
one chosen value. 



CONSENSUS PROBLEM FORMULATION 
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– A collection of processes, Pi. 
– They propose values Vi (e.g., time to attack, client 

update, lock requests, ...), and send messages to 
others to exchange proposals. 

– Different processes may propose different values, 
and they can all accept any of the proposed values. 

– Only one of the proposed values, V, will be 
“chosen” and eventually all processes learn that 
one chosen value. 



CONSENSUS PROBLEM FORMULATION 
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– Three requirements for a solution: 
–consistency:



CONSENSUS PROBLEM FORMULATION 
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– Three requirements for a solution: 
–consistency: once a value is chosen, the chosen value of all working processes 

is the same. 
– termination:



CONSENSUS PROBLEM FORMULATION 
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– Three requirements for a solution: 
–consistency: once a value is chosen, the chosen value of all working processes 

is the same. 
– termination: eventually they agree on a value (a.k.a., a value is “chosen”). 
–validity:



CONSENSUS PROBLEM FORMULATION 
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– Three requirements for a solution: 
–consistency: once a value is chosen, the chosen value of all working processes 

is the same. 
– termination: eventually they agree on a value (a.k.a., a value is “chosen”). 
–validity: the chosen value was proposed by one of the nodes. 



CONSENSUS IS IMPOSSIBLE
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– But, we achieve consensus all the time…



FLP’S STRONG ASSUMPTIONS
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– Deterministic actions at each node
–Randomized algorithms can achieve consensus

– Asynchronous network communication
–Synchronous or even partial synchrony is sufficient

– All “runs” must eventually achieve consensus
–In practice, many “runs” achieve consensus quickly
– In practice, “runs” that never achieve consensus happen vanishingly rarely 
–Both are true with good system designs



CONSENSUS IS PERVASIVE IN DS 

23

– Agreeing on order of updates to replicated DB. 
–One solution is primary/secondaries replication 
–There are several replicas, one is primary. 
–Reads and writes are accepted only by primary, which 

establishes an order for all operations before 
forwarding them to secondaries. 

–Multiple variants exist, but they all reduce 
to one core consensus question: how to choose the 
primary? A.k.a. leader election. 



IMPOSSIBILITY #2
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– Reaching an agreement, when there's a partition



NETWORK PARTITIONS DIVIDE SYSTEMS
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FUNDAMENTAL TRADEOFF?
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– Replicas appear to be a single machine, but lose availability during a 
network partition

– or
– All replicas remain available during a network partition but do not 

appear to be a single machine



CAP THEOREM PREVIEW
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– You cannot achieve all three of:
–Consistency
–Availability
–Partition-Tolerance 

– Partition Tolerance => Partitions Can Happen
– Availability => All Sides of Partition Continue
– Consistency => Replicas Act Like Single Machine

–Specifically, Linearizability



CAP THEOREM
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– Assume to contradict that Algorithm A provides all of CAP



CAP THEOREM
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– Assume to contradict that Algorithm A provides all of CAP



CAP THEOREM
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– Assume to contradict that Algorithm A provides all of CAP



CAP THEOREM
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– Assume to contradict that Algorithm A provides all of CAP



CAP CONJECTURE
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– Popular interpretation: 2-out-of-3



CAP INTERPRETATION PART 1
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– Cannot “choose” no partitions
–2-out-of-3 interpretation doesn’t make sense
–Instead, availability OR consistency?

– That is: Fundamental tradeoff between availability and consistency
–When designing system must choose one or the other, both are not possible



CAP INTERPRETATION PART 2
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– It is a theorem, with a proof, that you understand!
– Cannot “beat” CAP Theorem
– Can engineer systems to make partitions extremely rare, however, and 

then just take the rare hit to availability (or consistency)



TAKEAWAYS
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– Impossibility results are very useful
–Avoids wasting effort trying to achieve impossible
–Tells us the best-possible systems we can build!

– Today: two "impossiblilities"
–FLP: async systems, infinite time
–CAP: consistency, availability, partition-tolerance

– Next class: Two-phase Commit (2PC)



ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS 

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF. 
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD 

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR 
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.


