
CS4740
CLOUD COMPUTING

Transaction

Prof. Chang Lou, UVA CS, Fall 2025

1

CONTEXT

2

– We'll dive into more advanced topics: agreement, consensus..
– But before continuing DS, today we discuss how some DS

challenges are solved in simpler, single-node systems.
–Then we come back to distributed settings.

– Today: Transaction
–How transaction helps solving key system challenges
– Implement transaction: Part I

CHALLENGES OF DISTRIBUTED SYSTEMS

3

CHALLENGES OF DISTRIBUTED SYSTEMS

4

– Two common challenges of building a distributed system (e.g.,
database):
–Handling failures: failures are inevitable but they create the potential for partial

computations and correctness of computations after restart.
–Handling concurrency: concurrency is vital for performance (e.g., I/O is slow so

need to overlap with computation), but it creates races. Need to use some form  
of synchronization to avoid those.

They are not unique to distributed systems!

CHALLENGES OF SINGLE-NODE SYSTEMS

5

– Two common challenges of building a single-node system (e.g.,
database):
–Handling failures: servers may crash or operations may abort anytime.
–Handling concurrency: single-node systems handle concurrent requests to

improve throughput.

– Let's start from what we left last class: RPC

EXAMPLE: FLIGHT BOOKING

6

– Client code: 

x = server.getFlightAvailability(ABC, 123, date); // read(ABC, 123, date)
if (x > 0)
 y = server.bookTicket(ABC, 123, date); // write(ABC, 123, date)
server.putSeat(y, “aisle”);

FAILURE: ABORTION

7

Client 1
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);

write(y+1, ABC789);
crash/abort!

new ticket was
booked but old ticket
was not returned!

CONCURRENCY: 1. LOST UPDATE PROBLEM

8

Client 1
x = getSeats(ABC123);
 // x = 10
if(x > 1) 
 x = x – 1;
write(x, ABC123);

Client 2

x = getSeats(ABC123);
if(x > 1) //x = 10

 x = x – 1;
write(x, ABC123);

At Server: seats = 10

seats = 9

seats = 9

C1’s or C2’s update
was lost!

CONCURRENCY: 2. INCONSISTENT RETRIEVAL PROBLEM

9

Client 1
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);
 // ABC123 = 5 now

write(y+5, ABC789);

Client 2

x = getSeats(ABC123);
y = getSeats(ABC789);
 // x = 5, y = 15
print(“Total:” x+y);
 // Prints “Total: 20”

At Server:
 ABC123 = 10
 ABC789 = 15

C2’s sum is the
wrong value! Should
have been “Total: 25”

TRANSACTION

10

– Turing-award-winning idea.
– Abstraction provided to programmers that

encapsulates a unit of work against a database.
– Guarantees that the unit of work is executed

atomically in the face of failures and is isolated
from concurrency.

Jim Gray (1944-2012)

TRANSACTION API

11

– Simple but very powerful:
txID = Begin() // Starts a transaction. Returns a unique ID for the
 // transaction.

outcome= Commit(txID) // Attempts to commit a transaction; returns
 // whether or not the commit was successful. If
 // successful, all operations in the transaction
 // have been applied to the DB. If unsuccessful,
 // none of them has been applied.
Abort(txID) // Cancels all operations of a transaction and erases
 // their effects on the DB. Can be invoked by the
 // programmer or by the database engine itself.

SEMANTICS

12

– By wrapping a set of accesses in a transaction, the database can
hide failures and concurrency under meaningful guarantees.

– One such set of guarantees is ACID:
–Atomicity: Either all operations in the transaction will complete successfully

(commit outcome), or none of them will (abort outcome), regardless of failures.
– Isolation: A transaction’s behavior is not impacted by the presence of

concurrently executing transactions.
–Durability: The effects of committed transactions survive failures.

hide failures hide concurrency

EXAMPLE

13

Transaction T1
begin
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);
write(y+1, ABC789);

commit
Isolation: T1 don't get affected
by other transactions

Atomicity: both writes succeed,
or neither

Durability: writes are persisted
and recoverable after failures

HOW TO IMPLEMENT TRANSACTIONS?

14

– Atomicity and Durability
–Key mechanism: write-ahead logging

– Isolation

 Transaction 1

 Transaction 2

Crash/Abort!

No changes persisted

All changes persisted

HOW TO MAKE UPDATES DURABLE

15

Transaction T1
begin
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);
write(y+1, ABC789);

commit

x = 10

Disk: x = 9
y = 10

Disk: y = 11

HOW TO MAKE UPDATES DURABLE

16

– Write updates to disk!

Transaction T1
begin
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);
write(y+1, ABC789);

commit

write to disk!
write to disk!

x = 10

Disk: x = 9
y = 10

Disk: y = 11

HOW TO MAKE UPDATES ATOMIC

17

– Write updates to disk!

Transaction T1
begin
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);

write(y+1, ABC789);
commit

write to disk!
crash!

x = 10

Disk: x = 9
y = 10

now x needs to be
reverted to old value
(UNDO)! But how do
we know?

HOW ABOUT WRITING DATA TO DISK WHEN COMMITTING

18

– Write updates to disk!

Transaction T1
begin
x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-1, ABC123);

write(y+1, ABC789);
commit write to disk!

crash!

x = 10
y = 10

writing large pages
directly to disk is very
slow, which blocks
the return of "commit"

BASIC IDEA: LOGGING

19

– Record UNDO/REDO information, for every update, in a log
–Sequential writes to log (put in one a separate disk)
–Minimal diff written to log, so multiple updates fit in a single log page

– Log: An ordered list of UNDO/REDO actions
–Log record: <XID, location, old data, new data> 1, a: 3->4

2, a: 4->9

3, b: 2->1

4, a: 9->0

logs

WHY SIMPLE LOGGING NOT WORKING?

20

Main Memory

Data on Disk Log on Disk

a=0

a=0

WHY SIMPLE LOGGING NOT WORKING?

21

Main Memory

Data on Disk Log on Disk

a=1

a=0

Option1: committing
before we’ve written
either data or log to
disk…

T:
Read(A),
Write(A)
Commit

a:0->1

WHY SIMPLE LOGGING NOT WORKING?

22

Main Memory

Data on Disk Log on Disk

a=1

a=0

Option1: committing
before we’ve written
either data or log to
disk…

T:
Read(A),
Write(A)
Commit

crash!

what happened?

Lost T’s update!

write disk data
write disk log

a:0->1 commit

WHY SIMPLE LOGGING NOT WORKING?

23

Main Memory

Data on Disk Log on Disk

a=1

a=1

Option2: committing
after we’ve written
data but before we’ve
written log to disk…

crash!
what happened?
How do we know
whether T was
committed??

a:0->1 commit

write disk data

write disk log

T:
Read(A),
Write(A)

Commit

WRITE-AHEAD LOGGING (WAL)

24

– The Write-Ahead Logging Protocol:
–Write logs to disk and return to the client
–Write the data to disk asynchronously

WRITE-AHEAD LOGGING (WAL)

25

Main Memory

Data on Disk Log on Disk

a=1

a=0

WAL: committing
after we’ve written
log to disk but before
we’ve written data to
disk
crash!
what happened?

write disk log

write disk data

T:
Read(A),
Write(A)

Commit

a:0->1

read data from disk

WRITE-AHEAD LOGGING (WAL)

26

Main Memory

Data on Disk Log on Disk

a=1

a=0

WAL: committing
after we’ve written
log to disk but before
we’ve written data to
disk
crash!
what happened?a:0->1

write disk log

write disk data

T:
Read(A),
Write(A)

Commit

a:0->1

read data from disk

WRITE-AHEAD LOGGING (WAL)

27

Main Memory

Data on Disk Log on Disk

a=1

a=0

WAL: committing
after we’ve written
log to disk but before
we’ve written data to
disk
abort!
what happened?a:0->1

write disk log

write disk data

T:
Read(A),
Write(A)

Commit

a:0->1

Just UNDO the log

a=0

WRITE-AHEAD LOGGING (WAL)

28

Main Memory

Data on Disk Log on Disk

a=1

a=0

WAL: committing
after we’ve written
log to disk but before
we’ve written data to
disk
crash!
what happened?a:0->1

write disk log

write disk data

T:
Read(A),
Write(A)

Commit
commit

a:0->1 commit

Just REDO the log
a=1

WRITE-AHEAD LOGGING (WAL)

29

Main Memory

Data on Disk Log on Disk

a=1

a=1

WAL: committing
after we’ve written
log to disk but before
we’ve written data to
disk
crash!
what happened?a:0->1

write disk log

write disk data

T:
Read(A),
Write(A)

Commit
commit

a:0->1 commit

read data from disk

RECOVERING FROM SIMPLE FAILURES

30

– e.g., system crash
–For now, assume we can read the log

– “Analyze” the log
– Redo all (usually) transactions (forward)

–Repeating history!

– Undo uncommitted transactions (backward)

WHY WRITE-AHEAD LOGGING (WAL)

31

– The Write-Ahead Logging Protocol:
–Must enforce the log record for an update before the corresponding data page gets to

disk (where the name of protocol comes from)
–Must write all log records for a Xact before commit

– #1 guarantees Atomicity
– #2 guarantees Durability

THE PERFORMANCE OF WAL

32

– Why performance is good?
–This decouples writing a transaction’s dirty pages to database on disk from committing

the transaction.
–We only need to write its corresponding log records.
– If a txn updates a 100 tuples stored in 100 pages, we only need to write 100 log

records (which could be a few pages) instead of 100 dirty pages.

TAKEAWAYS

33

– Systems need dealing with failures and concurrency
– Transactions provide Atomicity, Durability, Isolation

–How? Write-Ahead Logging

– Next class: Transaction (contd.)
–We'll discuss concurrency control techniques such as locking

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS SLIDES INCLUDES CONTENTS FROM TAMAL TANU BISWAS' SLIDES FOR
ROCHESTER DATABASE SYSTEMS

