
CS4740
CLOUD COMPUTING

RPC (Remote Procedure Call)

Prof. Chang Lou, UVA CS, Fall 2025

1

CONTEXT

– Previously: how we ease distributed analytics w/ MapReduce.
– The insight is to raise the level of abstraction.

2

Dev's Analytics
Programs

Machine Machine Machine

Dev's Analytics
Programs

Machine Machine Machine

MapReduce
(Simplified, Map() + Reduce ())

CONTEXT

– How do we build distributed frameworks like MapReduce?
– Today we look at the most basic DS abstraction: RPC, the

predominant communication abstraction in a DS.

3

AGENDA

– Motivation of RPC
– How RPC works
– Dealing with Failures

4

What is "R"PC?

5

FROM LPC TO RPC

– Before talking about RPC (remote procedure call), let's talk about LPC
(local procedure call).

6

z = fn(x, y) 
... do smth with z

fn(x, y) { 
 // compute result z
 return z;
}

Caller
Callee

FROM LPC TO RPC

– Before talking about RPC (remote procedure call), let's talk about LPC
(local procedure call).

7

z = fn(x, y) 
... do smth with z

fn(x, y) { 
 // compute result z
 return z;
}

Caller
Callee

What if they are in two different machines?

node #1 node #2

Malte Schwarzkopf, "What does it take to make Google work at scale?"
EXAMPLE: (PART OF) GOOGLE INFRA STACK

8

IMPLEMENTING NEW PROCEDURE CALL

– Now procedure calls are no
longer simple..

– What are the issues?

9

struct foomsg {
 u_int32_t len;
} 
send_foo(int outsock, char* contents) {
 int msglen = sizeof(struct foomsg) +
 strlen(contents);
 char* buf = malloc(msglen); 
 struct foomsg* fm = (struct foomsg*)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents, strlen(contents));
 write(outsock, buf, msglen);
}

IMPLEMENTING NEW PROCEDURE CALL

– Now procedure calls are no
longer simple..

– What are the issues?
–Lots of ugly boilerplate
–Prone to bugs, vulnerabilities
–Portability issues
–Hard to understand/maintain/evolve

10

struct foomsg {
 u_int32_t len;
} 
send_foo(int outsock, char* contents) {
 int msglen = sizeof(struct foomsg) +
 strlen(contents);
 char* buf = malloc(msglen); 
 struct foomsg* fm = (struct foomsg*)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents, strlen(contents));
 write(outsock, buf, msglen);
}

WISDOM FROM THE PAST

– Before solutions in distributed systems were proposed, how was
the problem of communication resolved in Internet?

11

THE PROBLEM OF COMMUNICATION

– To coordinate, nodes must
communicate.

– Problems
–Re-implement every application for

every new underlying transmission
medium?

–Change every application on any
change to an underlying transmission
medium?

12

SOLUTION: LAYERING

– The power of layering
–Intermediate layers provide set of

abstractions for applications and
media

–New apps or media need only
implement for intermediate layer’s
interface

13

LAYERING IN THE INTERNET

– Transport: Provide end-to-end
communication between processes on
different hosts

– Network: Deliver packets to destinations
on other (heterogeneous) networks

– Link: Enables end hosts to exchange
atomic messages with each other

– Physical: Moves bits between two hosts
connected by a physical link

14

NETWORK SOCKET-BASED COMMUNICATION

15

– Socket: The interface the OS
provides to the network
–Provides inter-process explicit

message exchange

– Can build distributed systems
atop sockets: send(), recv()
–e.g.:put(key,value) -> message

SOLUTION: ANOTHER LAYER!

16

(~1984 paper by Birrell, Nelson)
RPC

– Idea: Make network communication look like a local procedure call
(LPC).

17

z = fn(x, y) 
... do smth with z

fn(x, y) { 
 // compute result z
 return z;
}

Caller (Client)
Implementation (Server)

librpc librpc

figure taken from Nelson paper
RPC ARCHITECTURE

18

BENEFITS?

– Easy to use and familiar to any programmer.
– Hides gory network/marshaling details that one would have to

implement if doing, e.g., network-level communication, byte orders, ...
– Supports evolution of the communicating components independently.
– Allows for efficient packaging of arguments/return vals.
– Authentication support.
– Location independence.

19

(or where distribution peeks through the LPC illusion)
PROBLEMS?

– Latency
–LPC: fast; RPC: can be slow.
–So care must be taken when invoking RPCs.

– Pointer transfers
–LPC: caller/callee share address space; RPC: no shared mem.
–RPClib can’t automatically decide what gets serialized and what doesn’t.

– Failures
–LPC: shared fate between caller and callee. RPC: caller and callee can  

fail independently (recall DS definition).
–This is the critical challenge in DS and why cannot hide distribution.

20

ANOTHER PROBLEM: DIFFERENCES IN DATA REPRESENTATION

– Not an issue for local procedure calls
– For a remote procedure call, a remote machine may:

–Run process written in a different language
–Represent data types using different sizes
–Use a different byte ordering (endianness)
–Represent floating point numbers differently
–Have different data alignment requirements

21

SOLUTION: INTERFACE DESCRIPTION LANGUAGE

– Mechanism to pass procedure parameters and return values in a
machine-independent way

– Programmer may write an interface description in the IDL
–Defines API for procedure calls: names, parameter/return types

– Then runs an IDL compiler which generates:
–Code to marshal (convert) native data types into machineindependent byte

streams (and vice-versa, called unmarshaling)
–Client stub: Forwards local procedure call as a request to server
–Server stub: Dispatches RPC to its implementation

22

EXAMPLE FROM GOOGLE'S PROTOBUF

23

message Person {

 optional string name = 1;

 optional int32 id = 2;

 optional string email = 3;

 enum PhoneType {

 PHONE_TYPE_UNSPECIFIED = 0;

 PHONE_TYPE_MOBILE = 1;

 PHONE_TYPE_HOME = 2;

 PHONE_TYPE_WORK = 3;

 }

 message PhoneNumber {

 optional string number = 1;

 optional PhoneType type = 2 [default = PHONE_TYPE_HOME];

 }

 repeated PhoneNumber phones = 4;

}

A DAY IN THE LIFE OF AN RPC

24

A DAY IN THE LIFE OF AN RPC

25

A DAY IN THE LIFE OF AN RPC

26

A DAY IN THE LIFE OF AN RPC

27

A DAY IN THE LIFE OF AN RPC

28

A DAY IN THE LIFE OF AN RPC

29

A DAY IN THE LIFE OF AN RPC

30

A DAY IN THE LIFE OF AN RPC

31

A DAY IN THE LIFE OF AN RPC

32

A DAY IN THE LIFE OF AN RPC

33

WHAT COULD POSSIBLY GO WRONG?

– Client may crash and reboot
– Packets may be dropped

–Some individual packet loss in the Internet
–Broken routing results in many lost packets

– Server may crash and reboot
– Network or server might just be very slow

34

FAILURES, FROM CLIENT’S PERSPECTIVE

35

The cause of the failure is hidden from the client!

RPC SEMANTICS

– At least once
– At most once
– Exactly once

36

AT LEAST ONCE

– Semantic: RPC is eventually executed at least once, but potentially
multiple times.

37

AT LEAST ONCE

– Semantic: RPC is eventually executed at least once, but potentially
multiple times.

– Simplest scheme for handling failures
– Implementation

–Client keeps issuing RPC until gets a response from server (retransmission).
– If failures (of net/server) are temporary, semantic satisfied.
–Repeat the above a few times. Still no response? Return an error to the

application

38

AT LEAST ONCE

39

Client sends a “debit $10 from bank account” RPC

AT LEAST ONCE AND WRITES

40

AT LEAST ONCE AND WRITES

41

AT MOST ONCE

– Semantic: RPC is executed zero or
one times, not more.

42

AT MOST ONCE

– Semantic: RPC is executed zero or
one times, not more.

– How to detect a duplicate request?
–Test: Server stub sees same function,

same arguments twice
–No! Sometimes applications legitimately

submit the same function with same
augments, twice in a row

43

AT MOST ONCE

– Semantic: RPC is executed zero or
one times, not more.

– Implementation:
–Clients identify their requests with unique

transaction ID (xid).
–Server remembers xids to detect  

duplicates and squelch them.

– Problem: server failure at
inopportune time can cause failure of
the semantic. Give examples.

44

AT-MOST-ONCE: PROVIDING UNIQUE XIDS

– Combine a unique client ID (e.g., IP address) with the current time of day
– Combine unique client ID with a sequence number

–Suppose client crashes and restarts. Can it reuse the same client ID?

– Big random number (probabilistic, not certain guarantee)

45

AT-MOST-ONCE: DISCARDING SERVER STATE

– Problem: seen and old arrays will grow without bound
– Observation: By construction, when the client gets a response to a

particular xid, it will never re-send it
– Client could tell server “I’m done with xid x – delete it”

–Have to tell the server about each and every retired xid
–Could piggyback on subsequent requests

46

EXACTLY ONCE

– Semantic: RPC is executed once.
– This is the ideal (it resembles the LPC model most closely and it’s easiest to

understand), but it’s surprisingly hard to implement.  

– Need retransmission of at least once scheme
– Plus the duplicate filtering of at most once scheme

–To survive client crashes, client needs to record pending RPCs on disk
–So it can replay them with the same unique identifier

– Plus story for making server reliable
–Even if server fails, it needs to continue with full state
–To survive server crashes, server should log to disk results of completed RPCs (to suppress duplicates)

47

DESIGN AN ATM: WHAT COULD GO WRONG?

48

ATM Data
center

RPC

call withdraw()

– When a person wants to withdraw cash from the ATM, the ATM sends
an RPC to the bank. The bank first checks that the person has enough
money in their account, and if so, deducts the money and confirms
with the ATM. The ATM, in turn, should give the money to the user.

implement withdraw()

EXACTLY-ONCE FOR EXTERNAL ACTIONS?

– Imagine that remote operation triggers an external physical thing
–e.g., dispense $100 from an ATM

– ATM could crash immediately before or after dispensing
–ATM would lose its state, and
–Don’t know which one happened (although can make window very small)

– Can’t achieve exactly-once in general, in presence of external
actions

49

TAKEAWAYS

50

– Layering is your friend when building systems!
– Need to solve many challenges for seemingly

"simple" abstractions
– Deal w/ RPC failures

–At-least-once w/ retransmission
–At-most-once w/ duplicate filtering
–Exactly-once with:

–at-least-once + at-most-once + fault tolerance + no
external actions

– Next class: transaction

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

