
CS4740
CLOUD COMPUTING

Cloud Infrastructure in Industry

Prof. Chang Lou, UVA CS, Fall 2025

1

LECTURE THEME

2

– We talked a lot about storage in this class, plus a bit about distributed computation.
For storage, we focused on a particular type of interface (transactional databases).  

– But there’s a vast range of infrastructural components that are needed for building
successful distributed applications. Large companies and open-source
communities have such components available.  

– This lecture aims to provide an index of such components. We won’t give details
about how these components are built, but pointers to where you can find out
more.
– the contents are heavily based on Malte Schwarzkopf's talk at Cambridge

“WHAT IT TAKES TO BUILD GOOGLE?”

3

4

5

6

WHAT HAPPENS IN THOSE 139MS?

A VIRTUAL TOUR TO DATACENTER

7

– 1. Datacenter hardware
– 2. Datacenter software

– a. Google
– b. Meta and Open source
– c. Moving forward: ML stack

Hardware

8

9

10

11

12

From Meta (as of 2022):
– O(?) machines in total
– O(?) regions
– O(?) interdependent services
– “Machine”

– no chassis (?)
– DC (direct current) battery
– mostly custom-made

– Network
– Top-of-Rack switch
– multi-path core

13

From Meta (as of 2022):
– O(1M) machines in total
– O(10s) regions
– O(1000s) interdependent services
– “Machine”

– no chassis (?)
– DC (direct current) battery
– mostly custom-made

– Network
– Top-of-Rack switch
– multi-path core

Source: Jeff Dean https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf, 2007.

14

THE JOYS OF REAL HARDWARE

and how is it different from HPC?
WHAT IT TAKES TO MANAGE LARGE-SCALE SYSTEMS

15

– Emphasis on commodity hardware
– No expensive interconnect
– Mid-range machines
– Energy/performance/cost trade-off essential

– Massive automation
– Very small number of on-site staff
– Automated software bootstrap

– Fault tolerant design
– Each component can fail
– Software must be aware and compensate

Software

16

SOFTWARE SYSTEMS STACK

17

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

18

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

19

GFS/COLOSSUS

20

– Bulk data block storage system
– Optimized for large files (GB-size)
– Supports small files, but not common case
– Read, write, record-append modes

– Colossus = GFSv2, adds some improvements
– e.g., Reed-Solomon-based erasure coding
– better support for latency-sensitive applications
– sharded meta-data layer, rather than single master

GFS/COLOSSUS

21

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

22

MOTIVATION

23

– Lots of (semi-)structured data at Google
– Web data: Contents, crawl metadata, links, anchors, pagerank, …
– Per-user data: • User preference settings, recent queries/search results, …
– Map data: • Physical entities (shops, restaurants, etc.), roads, satellite image data, user

annotations, …

– Scale is huge
– Billions of Web pages, many versions/page (~20K/version)
– Hundreds of millions of users, thousands of q/sec
– 100TB+ of satellite image data
– (Above numbers are as of 2006-7!)

WEB SEARCH: THE COMPLETE WORKFLOW

24

GOALS

25

– Want asynchronous processes to continuously update different
pieces of data
– Want access to most current data at any time

– Need to support:
– Very high read/write rates (millions of ops per second)
– Efficient retrieval of small subsets of the data
– Efficient scans over entire or subsets of the data

– Often want to examine data changes over time
– E.g. Contents of a web page over multiple crawls

BIGTABLE (2006)

26

– ‘Three-dimensional‘ key-value store:
– <row key, column key, timestamp> → value

– Effectively a distributed, sorted, sparse map

SYSTEM ARCHITECTURE

27

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

28

SPANNER (2012)

29

– BigTable insufficient for some consistency needs
– Often have transactions across >1 data centers

– May buy app on Play Store while travelling in the U.S.
– Hit U.S. server, but customer billing data is in U.K.
– Or may need to update several replicas for fault tolerance

– Wide-area consistency is hard
– due to long delays and clock skew
– no global, universal notion of time
– NTP not accurate enough, PTP doesn’t work (jittery links)

SPANNER (2012)

30

– Spanner offers transactional consistency: full RDBMS
– Secret sauce: hardware-assisted clock sync

– Using GPS and atomic clocks in data centres

– Use global timestamps and Paxos to reach consensus
– Still have a period of uncertainty for write TX: wait it out!
– Each timestamp is an interval:

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

31

MAPREDUCE (2004)

32

– Parallel programming framework for scale
– Run a program on 100’s to 10,000’s machines

– Framework takes care of:
– Parallelization, distribution, load-balancing, scaling up (or down) & fault-

tolerance

– Accessible: programmer provides two methods ;-)
– map(key, value) → list of <key’, value’> pairs
– reduce(key’, value’) → result
– Inspired by functional programming

MAPREDUCE (2004)

33

MAPREDUCE: PROS & CONS

34

– Extremely simple, and:
– Can auto-parallelize (since operations on every  

element in input are independent)
– Can auto-distribute (since rely on underlying Colossus/BigTable distributed storage)
– Gets fault-tolerance (since tasks are idempotent, i.e. can just re-execute if a

machine crashes)

– Doesn’t really use any sophisticated distributed systems algorithms
(except storage replication)

– However, not a panacea:
– Limited to batch jobs, and computations which are expressible as a map() followed

by a reduce()

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

35

DREMEL (2010)

36

– Column-oriented store
– For quick, interactive queries

DREMEL (2010)

37

user_id user_name current_balance number_of_transactions
1 'freddie@gmail.com' 1059298 1224
2 'lindsey@gmail.com' 254 1045
3 'tabby@yahoo.com' 3910 194
4 'philip@hotmail.com' 234028 130
5 'elon@x.com' -44000000000 1

SELECT sum(current_balance)
FROM table
WHERE user_id > 2

SELECT user_id, user_name,
 current_balance
FROM table
WHERE user_id = 1

Suitable for columnar DB Suitable for row-oriented DB

mailto:freddie@gmail.com
mailto:lindsey@gmail.com
mailto:tabby@yahoo.com
mailto:philip@hotmail.com
mailto:elon@x.com

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

38

CHUBBY SUMMARY

39

– Lock Service
– Chubby uses Paxos for everything

– Propagate writes to a file
– Choosing a Master
– Even for adding new Chubby servers to a Chubby cell

– Paxos transforms a multi-node service into something that looks
very much like one fault-tolerant, albeit slower, server! -> pretty
close to distributed systems’ core goal

CHUBBY INTERFACE: UNIX FILE SYSTEM

40

– Chubby supports a strict tree of files and directories
– The way to think about these files is that they are locks with a little bit of contents (e.g., identity and

location of a primary)
– No symbolic links, no hard links
– /ls/foo/wombat/pouch

– 1st component (ls): lock service (common to all names)
– 2nd component (foo): the chubby cell (used in DNS lookup to find the cell master)
– The rest: name inside the cell

– Support most normal operations
– Create, delete, open, write, ...

– Support reader/writer lock on a node

EXAMPLE: PRIMARY ELECTION

41

Open(“/ls/foo/OurServicePrimary”, “write mode”);
if (successful) {
 // primary
 SetContents(primary_identity);
} else { 
 // replica
 Open(“/ls/foo/OurServicePrimary”, “read mode”,
 “file-modification event”);
 when notified of file modification:
 primary = GetContentsAndStat();
}

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

42

BORG

43

– Cluster manager and scheduler
– Tracks machine and task liveness
– Decides where to run what

– Consolidates workloads onto machines
– Efficiency gain, cost savings
– Need fewer clusters

– You might be more familiar with its successor:

https://hanwenzhang123.medium.com/docker-vs-virtual-machine-vs-kubernetes-overview-389db7de7618
BACKGROUND: CONTAINERS

44

KUBERNETES ARCHITECTURE

45

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

46

https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE STACK

47

HAYSTACK & F4

48

– Blob stores, hold photos, videos
– not: status updates, messages, like counts

– Items have a level of hotness
– How many users are currently accessing this?
– Baseline “cold” storage: MySQL

– Want to cache close to users
– Reduces network traffic
– Reduces latency
– But cache capacity is limited!
– Replicate for performance, not resilience

What about 
other companies’ stacks?

49

HOW ABOUT OTHER COMPANIES?

50

– Very similar stacks.
– Microsoft, Yahoo, Twitter all similar in principle.

– Typical set-up:
– Front-end serving systems and fast back-ends.
– Batch data processing systems.
– Multi-tier structured/unstructured storage hierarchy.
– Coordination system and cluster scheduler.

– Minor differences owed to business focus
– e.g., Amazon focused on inventory/shopping cart.

OPEN SOURCE SOFTWARE

51

– Lots of open-source implementations!
– MapReduce → Hadoop, Spark, Metis
– GFS → HDFS
– BigTable → HBase, Cassandra
– Borg → Mesos, Firmament
– Chubby → Zookeeper

– But also some releases from companies...
– Presto (Facebook)
– Kubernetes (Google Borg)

THE STACK

52

NEWER STACKS

53

– Lots of new support for machine learning
– Google: Tensorflow, Tensorflow Serving, Tensorflow  

Extended (TFX)
– Uber: Michelangelo
– Spark/Berkeley Data Stack (BDAS): MLBase, MLlib,  

Clipper

https://community.hpe.com/t5/hpe-ezmeral-uncut/machine-learning-operationalization-in-the-enterprise/ba-p/7062451
HEWLETT-PACKARD (HP)

54

https://learn.microsoft.com/en-us/azure/architecture/ai-ml/idea/many-models-machine-learning-azure-machine-learning
MICROSOFT

55

https://fullstackdeeplearning.com/spring2021/lecture-6/
MLOPS INFRASTRUCTURE & TOOLING

56

TAKEAWAYS

57

– Running at huge (10k+ machines) scale requires different software stacks.
– Pretty interesting systems and design challenges.

– try to read more papers! (e.g., BigTable, Spanner..)

– Emerging new support for ML workloads.
– Next class: Virtualization

REFERENCES

58

– [1] Malte Schwartzkopf. "What does it take to make Google work at
scale?" 2015.

– [2] Jeff Dean. "Software Engineering Advice from Building Large-
Scale Distributed Systems," 2007.

– [3] Jeff Dean. "Building Software Systems at Google and Lessons
Learned," 2010.

– [4] Colin Scott. "Latency Numbers Every Programmer Should
Know."

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

