
CS4740 
CLOUD COMPUTING

Cloud Infrastructure in Industry

Prof. Chang Lou, UVA CS, Fall 2025

1



LECTURE THEME 
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– We talked a lot about storage in this class, plus a bit about distributed computation. 
For storage, we focused on a particular type of interface (transactional databases).  

– But there’s a vast range of infrastructural components that are needed for building 
successful distributed applications. Large companies and open-source 
communities have such components available.  

– This lecture aims to provide an index of such components. We won’t give details 
about how these components are built, but pointers to where you can find out 
more. 
– the contents are heavily based on Malte Schwarzkopf's talk at Cambridge 



“WHAT IT TAKES TO BUILD GOOGLE?” 
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WHAT HAPPENS IN THOSE 139MS? 



A VIRTUAL TOUR TO DATACENTER
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– 1. Datacenter hardware
– 2. Datacenter software 

– a. Google
– b. Meta and Open source 
– c. Moving forward: ML stack



Hardware
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From Meta (as of 2022): 
– O(?) machines in total 
– O(?) regions 
– O(?) interdependent services 
– “Machine” 

– no chassis (?)
– DC (direct current) battery 
– mostly custom-made 

– Network 
– Top-of-Rack switch 
– multi-path core 
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From Meta (as of 2022): 
– O(1M) machines in total 
– O(10s) regions 
– O(1000s) interdependent services 
– “Machine” 

– no chassis (?)
– DC (direct current) battery 
– mostly custom-made 

– Network 
– Top-of-Rack switch 
– multi-path core 



Source: Jeff Dean https://static.googleusercontent.com/media/research.google.com/en//people/jeff/stanford-295-talk.pdf, 2007. 
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THE JOYS OF REAL HARDWARE



and how is it different from HPC?
WHAT IT TAKES TO MANAGE LARGE-SCALE SYSTEMS
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– Emphasis on commodity hardware 
– No expensive interconnect 
– Mid-range machines 
– Energy/performance/cost trade-off essential 

– Massive automation 
– Very small number of on-site staff 
– Automated software bootstrap 

– Fault tolerant design 
– Each component can fail 
– Software must be aware and compensate 



Software
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SOFTWARE SYSTEMS STACK 
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https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 

18



https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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GFS/COLOSSUS 
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– Bulk data block storage system 
– Optimized for large files (GB-size) 
– Supports small files, but not common case 
– Read, write, record-append modes 

– Colossus = GFSv2, adds some improvements  
– e.g., Reed-Solomon-based erasure coding 
– better support for latency-sensitive applications 
– sharded meta-data layer, rather than single master 



GFS/COLOSSUS 
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https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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MOTIVATION
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– Lots of (semi-)structured data at Google
– Web data: Contents, crawl metadata, links, anchors, pagerank, …
– Per-user data: • User preference settings, recent queries/search results, …
– Map data: • Physical entities (shops, restaurants, etc.), roads, satellite image data, user 

annotations, …

– Scale is huge
– Billions of Web pages, many versions/page (~20K/version) 
– Hundreds of millions of users, thousands of q/sec
– 100TB+ of satellite image data 
– (Above numbers are as of 2006-7!)



WEB SEARCH: THE COMPLETE WORKFLOW
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GOALS
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– Want asynchronous processes to continuously update different 
pieces of data
– Want access to most current data at any time

– Need to support:
– Very high read/write rates (millions of ops per second)
– Efficient retrieval of small subsets of the data
– Efficient scans over entire or subsets of the data

– Often want to examine data changes over time
– E.g. Contents of a web page over multiple crawls



BIGTABLE (2006)
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– ‘Three-dimensional‘ key-value store: 
– <row key, column key, timestamp> → value

– Effectively a distributed, sorted, sparse map 



SYSTEM ARCHITECTURE
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https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 

28



SPANNER (2012)
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– BigTable insufficient for some consistency needs 
– Often have transactions across >1 data centers 

– May buy app on Play Store while travelling in the U.S. 
– Hit U.S. server, but customer billing data is in U.K.
– Or may need to update several replicas for fault tolerance 

– Wide-area consistency is hard
– due to long delays and clock skew 
– no global, universal notion of time
– NTP not accurate enough, PTP doesn’t work (jittery links) 



SPANNER (2012)
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– Spanner offers transactional consistency: full RDBMS 
– Secret sauce: hardware-assisted clock sync 

– Using GPS and atomic clocks in data centres 

– Use global timestamps and Paxos to reach consensus 
– Still have a period of uncertainty for write TX: wait it out!
– Each timestamp is an interval: 



https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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MAPREDUCE (2004)
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– Parallel programming framework for scale 
– Run a program on 100’s to 10,000’s machines 

– Framework takes care of: 
– Parallelization, distribution, load-balancing, scaling up (or down) & fault-

tolerance 

– Accessible: programmer provides two methods ;-) 
– map(key, value) → list of <key’, value’> pairs
– reduce(key’, value’) → result
– Inspired by functional programming 



MAPREDUCE (2004)
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MAPREDUCE: PROS & CONS 
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– Extremely simple, and: 
– Can auto-parallelize (since operations on every  

element in input are independent) 
– Can auto-distribute (since rely on underlying Colossus/BigTable distributed storage) 
– Gets fault-tolerance (since tasks are idempotent, i.e. can just re-execute if a 

machine crashes) 

– Doesn’t really use any sophisticated distributed systems algorithms 
(except storage replication) 

– However, not a panacea: 
– Limited to batch jobs, and computations which are expressible as a map() followed 

by a reduce() 



https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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DREMEL (2010)
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– Column-oriented store 
– For quick, interactive queries 



DREMEL (2010)
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user_id user_name            current_balance number_of_transactions 
1 'freddie@gmail.com'  1059298 1224
2 'lindsey@gmail.com'  254 1045
3 'tabby@yahoo.com'    3910 194
4 'philip@hotmail.com' 234028 130
5 'elon@x.com'         -44000000000 1

SELECT sum(current_balance) 
FROM table
WHERE user_id > 2

SELECT user_id, user_name,      
        current_balance 
FROM table 
WHERE user_id = 1

Suitable for columnar DB Suitable for row-oriented DB

mailto:freddie@gmail.com
mailto:lindsey@gmail.com
mailto:tabby@yahoo.com
mailto:philip@hotmail.com
mailto:elon@x.com


https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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CHUBBY SUMMARY 
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– Lock Service 
– Chubby uses Paxos for everything

– Propagate writes to a file
– Choosing a Master
– Even for adding new Chubby servers to a Chubby cell 

– Paxos transforms a multi-node service into something that looks 
very much like one fault-tolerant, albeit slower, server! -> pretty 
close to distributed systems’ core goal 



CHUBBY INTERFACE: UNIX FILE SYSTEM 
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– Chubby supports a strict tree of files and directories  
– The way to think about these files is that they are locks with a little bit of contents (e.g., identity and 

location of a primary) 
– No symbolic links, no hard links 
– /ls/foo/wombat/pouch 

– 1st component (ls): lock service (common to all names) 
– 2nd component (foo): the chubby cell (used in DNS lookup to find the cell master)
– The rest: name inside the cell 

– Support most normal operations 
– Create, delete, open, write, ... 

– Support reader/writer lock on a node 



EXAMPLE: PRIMARY ELECTION 
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Open(“/ls/foo/OurServicePrimary”, “write mode”); 
if (successful) { 
  // primary 
  SetContents(primary_identity); 
} else { 
  // replica 
  Open(“/ls/foo/OurServicePrimary”, “read mode”, 
    “file-modification event”); 
  when notified of file modification: 
    primary = GetContentsAndStat(); 
} 



https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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BORG 
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– Cluster manager and scheduler 
– Tracks machine and task liveness 
– Decides where to run what 

– Consolidates workloads onto machines 
– Efficiency gain, cost savings 
– Need fewer clusters 

– You might be more familiar with its successor: 



https://hanwenzhang123.medium.com/docker-vs-virtual-machine-vs-kubernetes-overview-389db7de7618
BACKGROUND: CONTAINERS 

44



KUBERNETES ARCHITECTURE 
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https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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https://people.csail.mit.edu/malte/pub/dissertations/phd-final.pdf
THE                  STACK 
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HAYSTACK & F4
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– Blob stores, hold photos, videos 
– not: status updates, messages, like counts 

– Items have a level of hotness 
– How many users are currently accessing this? 
– Baseline “cold” storage: MySQL 

– Want to cache close to users 
– Reduces network traffic 
– Reduces latency 
– But cache capacity is limited! 
– Replicate for performance, not resilience 



What about 
other companies’ stacks? 

49



HOW ABOUT OTHER COMPANIES? 
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– Very similar stacks.
– Microsoft, Yahoo, Twitter all similar in principle. 

– Typical set-up: 
– Front-end serving systems and fast back-ends. 
– Batch data processing systems. 
– Multi-tier structured/unstructured storage hierarchy. 
– Coordination system and cluster scheduler. 

– Minor differences owed to business focus 
– e.g., Amazon focused on inventory/shopping cart. 



OPEN SOURCE SOFTWARE 
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– Lots of open-source implementations! 
– MapReduce → Hadoop, Spark, Metis
– GFS → HDFS 
– BigTable → HBase, Cassandra
– Borg → Mesos, Firmament
– Chubby → Zookeeper 

– But also some releases from companies... 
– Presto (Facebook)
– Kubernetes (Google Borg) 



THE                  STACK 
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NEWER STACKS 
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– Lots of new support for machine learning 
– Google: Tensorflow, Tensorflow Serving, Tensorflow  

Extended (TFX) 
– Uber: Michelangelo 
– Spark/Berkeley Data Stack (BDAS): MLBase, MLlib,  

Clipper 



https://community.hpe.com/t5/hpe-ezmeral-uncut/machine-learning-operationalization-in-the-enterprise/ba-p/7062451
HEWLETT-PACKARD (HP)
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https://learn.microsoft.com/en-us/azure/architecture/ai-ml/idea/many-models-machine-learning-azure-machine-learning
MICROSOFT
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https://fullstackdeeplearning.com/spring2021/lecture-6/
MLOPS INFRASTRUCTURE & TOOLING
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TAKEAWAYS
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– Running at huge (10k+ machines) scale requires different software stacks. 
– Pretty interesting systems and design challenges.

– try to read more papers! (e.g., BigTable, Spanner..) 

– Emerging new support for ML workloads.
– Next class: Virtualization
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