CLOUD COMPUTING

Case study: ZooKeeper

Prof. Chang Lou, UVA CS, Fall 2025

Z00Keeper: walt-free coordination for
Internet-scale systems

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira,
Benjamin Reed

USENIX ATC 2010

AGENDA

— Motivation: MapReduce Coordinator

— Programming with ZooKeeper
— Interface
— Code Example

— Performance

WHY ARE WE READING THIS PAPER?

— A simpler foundation for fault-tolerant applications.
— the go-to application if you just start learning distributed systems

— High-performance in a real-life service built on Raft-like replication.

— Also because it's very widely used.

PROBLEM WITH SINGLE COORDINATOR

—If we wanted to make a fault-tolerant service like MR coordinator,

— we could replicate with Raft, and that would be OK!

Master

Worker

Worker

Worker

PROBLEM WITH SINGLE COORDINATOR

— but building directly on Raft is complex
— areplicated state machine is awkward to program

—you can think of state machine replication (Raft) as replicating
— the computation; the state is replicated as a side-effect.

— can we replicate state without replicating computation®

— yes: use fault-tolerant storage, for example ZooKeeper . M .
— easier to write the MR coord than with replicated state machine M2] [M3
— ordinary straight-line code, plus "save" calls / [\

Worker Worker

NEW PARADIGM W/ ZOOKEEPER

- nOW What |f MR COOrd fa"S? new(_coo;(iji? M2
Ip addr
— we weren' replicating it on a backup coord server
R ZooKeeper _
— but we don't need one! ¥ Vi
— just pick any computer, start MR coord s/w on it, M1y M2

who IS new
coord?

— have it read state from ZK.

X
— new coord can pick up where failed one left off. [/ |

— makes the most sense in a cloud Worker | | Worker | | Worker

— easy to allocate a replacement server

7

WHAT MIGHT MR COORD STORE IN ZK?

— coord's IP addr, set of jobs, status of tasks, set of workers,
assignments

— update data in ZK on each change

— (but big data itself in GFS, not ZK)

— ZK acting as a "configuration service"
— helps MR coord and worker find each other

NEXT: CHALLENGES

— detect MR coord failure
— elect new MR coord (one at a time! no split brain!)

— new coord needs to be able to recover/repair state read from ZK
— what if old coord crashed midway through complex update?

— what if old coord doesn't realize it's been replaced

— can it still read/write state in ZK?
— can it affect other entities incorrectly? e.g. tell workers to do things?

— performance

Z00Keeper Architecture

ARCHITECTURE

Chient (lient (lient (ient Client Client

11

Z00Keeper Interface

ZOOKEEPER DATA MODEL

— the state: a file-system-like tree of znodes

— file names, file content, directories, path names
— directories help different apps avoid interfering

— each znode has a version number (?)

— types of znodes:
— regular

lapp2

lapp1/p_1 /app1/p_ 2 /app1/p_3

— ephemeral

Figure 1: Illustration of ZooKeeper hierarchical name
space.

— seqguential: name + segno

13

OPERATIONS (CREATE)

— S =o0penSession()

— create(s, path, data, flags)
— exclusive -- fails if path already exists
— flags specify types: regular, ephemeral, sequential

S = openSession()

S = openSession() create(s, "/r", ephemeral=true) .
o . - S = openSession()
create(s, "/r") getChildren(s, "/") o .
. - create(s, "/r", sequential=true)
getChildren(s, "/") =>/r . .
. create(s, "/r", sequential=true)
= /r closeSession(s) // or crash . "
create(s, "/r") s2 = openSession() getChildren(s, */")
=> false, already exists getChildren(s2, "/") > /10000000001, /F0000000002

=> Nnull

14

OPERATIONS (OTHERS)

— exists(s, path, watch)
— watch=true asks for notification if path is later created/deleted

— getData(s, path, watch) -> data, version

— setData(s, path, data, version)
— if znode.version = version, then update

— getChildren(s, path, watch)
— delete(s, path, watch)

— these throw an exception if the ZK server says it has terminated the session
— so0 that application won't continue

15

OPERATIONS

— ZooKeeper API well tuned for concurrency and synchronization:
— + exclusive file creation; exactly one concurrent create returns success
— + getData()/setData(x, version) supports mini-transactions
— + sessions help cope with client failure (e.g. release locks)
— + sequential files create order among multiple clients
— + watches avoid costly repeated polling

16

Programming Example

EXAMPLE: SIMPLE LOCK

Lock Unlock

S = createSession

while true: delete(s, "/lock")

If create(s, "/lock", ephemeral=true)
// go ahead and do stuff

else if exists(s, "/lock", watch=true)
walit for watch event

Problem: Herd effect
If many clients wait for a lock, they will all vie for the lock
when it is released but one client can get the lock.

18

EXAMPLE: LOCK WITHOUT HERD EFFECT

Lock Unlock

S = createSession
n = create(s, "/lock/lock-",

ephemeral=true, sequential=true)

while true: delete(s, n)

C= getChildren(s, "/lock", false)
if n is lowest znode in C, break
p = znode in C ordered just before n
If exists(s, p, watch=true)
wait for watch event Why this design works?

19

EXAMPLE: LOCK WITHOUT HERD EFFECT

— Q: could a lower-numbered file be created after getChildren()?

— Q: can watch fire before it is the client's turn?

lock-10 <- current lock holder
lock-11 <- next one
lock-12 <- my request

— A:vyes
— If client that created lock-11 dies before it gets the lock, the
— watch will fire but it isnt my turn yet.

20

EXAMPLE: MAPREDUCE COORDINATOR ELECTION

— eXxclusive create

S = openSession()

while true: — if multiple clients concurrently
If create(s, "/mr/c", ephemeral=true) attempt, only one will succeed
// we are the coordinator! — ephemeral znode
setData(s, "/mr/ip", ...) — coordinator failure automatically
else if exists(s, "/mr/c", watch=true) lets new coordinator be elected

/[we are not the coordinator

wait for watch event — watch

— potential replacement
coordinators can wait w/o polling

21

REQUIREMENTS FOR SOLUTION

— *want to elect a replacement
— * must cope with crash in the middle of updating state in ZK
— * must cope with possibility that the coordinator *didn't* fail!

22

REQUIREMENT 1: ELECT NEW COORD

— client failure -> client stops sending keep-alive messages to ZK

— no keep-alives -> ZK leader times out and terminates the session
— session termination -> ZK leader deletes session's ephemeral files
— and ignores further requests from that session

— ephemeral deletions are A-linearizable ZK ops

— now a hew MR coordinator can elect itself

23

REQUIREMENT 2: ATOMICITY

— what if the MR coordinator crashes while updating state in ZK?

— maybe store all data in a single ZK file
— individual setData() calls are atomic (all or nothing vs failure)

— what if there are multiple znodes containing state data?
— use paper's "ready" file scheme

24

REQUIREMENT 3: DEAL WITH OLD COORD

— what if the coordinator is alive and thinks it is still coordinator, but ZK
has decided it is dead and deleted its ephemeral /mr/c file”?

— a new coordinator will likely be elected.
— will two computers think they are the coordinator?
— this could happen.

— can the old coordinator modify state in ZK?

— this cannnot happen!

25

REQUIREMENT 3: DEAL WITH OLD COORD

— when ZK times out a client's session, two things happen atomically:

— ZK deletes the clients ephemeral nodes.
— ZK stops listening to the session -- will reject all operations.

— S0 old coordinator can no longer modify or read data in ZK!

— ifittries, its client ZK library will raise an exception
— forcing the client to realize it is no longer coordinator

26

REQUIREMENT 3: DEAL WITH OLD COORD

— an important pattern in distributed systems:

— asingle entity (e.g. ZK) decides which computers are alive or dead
— sometimes called a failure detector

— It may not be correct, e.g. if the network drops messages

— but everyone obeys Iits decisions

— agreement is more important than being right, to avoid split brain
— but possibility of being wrong => may need to fence

27

REQUIREMENT 3: DEAL WITH OLD COORD

— what if coordinator interacts with entities (e.g., workers) other than
ZK?

— that don't know about the coordinator's ZK session state.
— they may need to fence (i.e. ignore deposed coordinator) -- how?

— Idea: worker could "watch" leader znode in ZK to learn of changes.
— not perfect: window between change and watch notification arrival.

28

REQUIREMENT 3: DEAL WITH OLD COORD

—ldea: each new coordinator gets an increasing "epoch” number.
— from afile in ZK.
— coordinator sends epoch in each message to workers.
— workers remember highest epoch they have seen.
— workers reject messages with epochs smaller than highest seen.
— so they'll ignore a superseded coordinator once they
— See a newer coordinator.

29

Performance

PERFORMANCE OPTIMIZATION

— Data must fit in memory, so reads are fast (no need to read disk).
— So you can't store huge quantities of data in ZooKeeper.

— Writes (log entries) must be written to disk, and waited for.

— So committed updates aren't lost in a crash or power failure.
— Hurts latency; batching can help throughput.

— Periodically, complete snapshots are written to disk.
— Fuzzy technique allows snapshotting concurrently with write operations.

31

PERFORMANCE OPTIMIZATION

— emphasis is on handling many reading/watching clients

— 1) many ZK follower servers; clients are spread over them for parallelism
— client sends all operations to its ZK follower

— ZK follower executes reads locally, from its replica of ZK data

— to avoid loading the ZK leader

— ZK follower forwards writes to ZK leader

— 2) watch, not poll

— the ZK follower (not the ZK leader) does the work

32

PERFORMANCE OPTIMIZATION

— 3) clients of ZK can launch async operations

— l.e. send request; completion notification delivered to code
separately

— unlike RPC

— aclient can launch many writes without waiting

— ZK processes them efficiently in a batch; fewer msgs, disk writes
— client library numbers them, ZK executes them in that order

— e.g. to update a bunch of znodes then create "ready" znode

33

HOW IS THE PERFORMANCE?

— Qpverall, can handle 10s of thousands of

10000 Throughput of saturated system _ Opera‘tlons / SeCOnd-

soooo | 33overs — Is this a lot? Enough?

b2 — Why do the lines go up as they move to the
50000 right?

40000

Operations per second

— Why does the x=0 performance go down as the
number of servers increases”?

30000
20000

10000 f

e — Why does the "3 servers" line change to be
Percentage cfesdrequests worst at 100% reads?
Figure 5: The throughput performance of a saturated sys- — VVhat might limit it to 20,0007 Why not 200,0007

tem as the ratio of reads to writes vary.

— Each opis a 1000-byte write...

34

WHAT ABOUT RECOVERY TIME?

Time series with failures
70000
Throu

60000
e W
S
w
$ 40000
o ®
wn

@ ®) @b

S 30000
§

@
Q
OOOOOO

00000

|® |®

Seconds since start of series

Figure 8: Throughput upon failures.
— Follower failure -> just a decrease In total throughput.

— Leader failure -> a pause for timeout and election.
— Visually, on the order of a few seconds.

35

ZOOKEEPER IS VERY WIDELY USED

— see ZooKeeper's Wikipedia page for a list of projects that use it

— often used as a kind of fault-tolerant name service
— what's the current coordinator's IP address”? what workers exist?

— can be used to simplify overall fault-tolerance strategy

— store all state in ZK e.g. MR queue of jobs, status of tasks
— then service servers needn't themselves replicate

36

WHY IT IS CALLED ZOOKEEPER?

coordlnate

h”s“ncsi'é A

@hadaap

ARIE

37

NEXT MONDAY: LAB DAY

— We will implement a Leader Election service with ZooKeeper
— Please setup the ZooKeeper on your laptop before class!

Process 1: Process 2: Process 3:
| joined the cluster.
| became leader!

| joined the cluster. | joined the cluster.

| am following node 1! | am following node 1!
| left the cluster.

| became leader!
| joined the cluster. | am following node 2!

| am following node 2!

38

[NIVERSITY
JVIRGINIA

TAKEAWAYS

—Zookeeper provides simple but convenient interface for coordination.
— Key concepts: session, znode types, watch..

—Efficiency and correctness guarantees depend on how clients use them.

—Next class: [Lab Day] Implement Leader Election with ZooKeeper

39

AN

[UNIVERSITY
I\VIRGINIA

ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS
SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

