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WHY ARE WE READING THIS PAPER?

— A simpler foundation for fault-tolerant applications.
— the go-to application if you just start learning distributed systems

— High-performance in a real-life service built on Raft-like replication.

— Also because it's very widely used.




PROBLEM WITH SINGLE COORDINATOR

—If we wanted to make a fault-tolerant service like MR coordinator,

— we could replicate with Raft, and that would be OK!
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PROBLEM WITH SINGLE COORDINATOR

— but building directly on Raft is complex
— areplicated state machine is awkward to program

—you can think of state machine replication (Raft) as replicating
— the computation; the state is replicated as a side-effect.

— can we replicate state without replicating computation®

— yes: use fault-tolerant storage, for example ZooKeeper . M .
— easier to write the MR coord than with replicated state machine M2] [ M3
— ordinary straight-line code, plus "save" calls / [ \

Worker Worker




NEW PARADIGM W/ ZOOKEEPER

- nOW What |f MR COOrd fa"S? new(_coo;(iji? M2
Ip addr
— we weren' replicating it on a backup coord server
R ZooKeeper _
—  but we don't need one! ¥ Vi
— just pick any computer, start MR coord s/w on it, M1y M2

who IS new
coord?

— have it read state from ZK.

X
— new coord can pick up where failed one left off. [ / |

— makes the most sense in a cloud Worker | | Worker | | Worker

— easy to allocate a replacement server
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WHAT MIGHT MR COORD STORE IN ZK?

— coord's IP addr, set of jobs, status of tasks, set of workers,
assignments

— update data in ZK on each change

— (but big data itself in GFS, not ZK)

— ZK acting as a "configuration service"
— helps MR coord and worker find each other




NEXT: CHALLENGES

— detect MR coord failure
— elect new MR coord (one at a time! no split brain!)

— new coord needs to be able to recover/repair state read from ZK
— what if old coord crashed midway through complex update?

— what if old coord doesn't realize it's been replaced

— can it still read/write state in ZK?
— can it affect other entities incorrectly? e.g. tell workers to do things?

— performance




Z00Keeper Architecture




ARCHITECTURE

Chient (lient (lient (ient Client Client
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Z00Keeper Interface




ZOOKEEPER DATA MODEL

— the state: a file-system-like tree of znodes

— file names, file content, directories, path names
— directories help different apps avoid interfering

— each znode has a version number (?)

— types of znodes:
— regular

lapp2

lapp1/p_1 /app1/p_ 2 /app1/p_3

— ephemeral

Figure 1: Illustration of ZooKeeper hierarchical name
space.

— seqguential: name + segno
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OPERATIONS (CREATE)

— S =o0penSession()

— create(s, path, data, flags)
— exclusive -- fails if path already exists
— flags specify types: regular, ephemeral, sequential

S = openSession()

S = openSession() create(s, "/r", ephemeral=true) .
o . - S = openSession()
create(s, "/r") getChildren(s, "/") o .
. - create(s, "/r", sequential=true)
getChildren(s, "/") =>/r . .
. create(s, "/r", sequential=true)
= /r closeSession(s) // or crash . "
create(s, "/r") s2 = openSession() getChildren(s, */")
=> false, already exists getChildren(s2, "/") > /10000000001, /F0000000002

=> Nnull
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OPERATIONS (OTHERS)

— exists(s, path, watch)
— watch=true asks for notification if path is later created/deleted

— getData(s, path, watch) -> data, version

— setData(s, path, data, version)
— if znode.version = version, then update

— getChildren(s, path, watch)
— delete(s, path, watch)

— these throw an exception if the ZK server says it has terminated the session
— so0 that application won't continue
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OPERATIONS

— ZooKeeper API well tuned for concurrency and synchronization:
— + exclusive file creation; exactly one concurrent create returns success
— + getData()/setData(x, version) supports mini-transactions
— + sessions help cope with client failure (e.g. release locks)
— + sequential files create order among multiple clients
— + watches avoid costly repeated polling
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Programming Example




EXAMPLE: SIMPLE LOCK

Lock Unlock

S = createSession

while true: delete(s, "/lock")

If create(s, "/lock", ephemeral=true)
// go ahead and do stuff

else if exists(s, "/lock", watch=true)
walit for watch event

Problem: Herd effect
If many clients wait for a lock, they will all vie for the lock
when it is released but one client can get the lock.
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EXAMPLE: LOCK WITHOUT HERD EFFECT

Lock Unlock

S = createSession
n = create(s, "/lock/lock-",

ephemeral=true, sequential=true)

while true: delete(s, n)

C= getChildren(s, "/lock", false)
if n is lowest znode in C, break
p = znode in C ordered just before n
If exists(s, p, watch=true)
wait for watch event Why this design works?
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EXAMPLE: LOCK WITHOUT HERD EFFECT

— Q: could a lower-numbered file be created after getChildren()?

— Q: can watch fire before it is the client's turn?

lock-10 <- current lock holder
lock-11 <- next one
lock-12 <- my request

— A:vyes
— If client that created lock-11 dies before it gets the lock, the
— watch will fire but it isnt my turn yet.
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EXAMPLE: MAPREDUCE COORDINATOR ELECTION

— eXxclusive create

S = openSession()

while true: — if multiple clients concurrently
If create(s, "/mr/c", ephemeral=true) attempt, only one will succeed
// we are the coordinator! — ephemeral znode
setData(s, "/mr/ip", ...) —  coordinator failure automatically
else if exists(s, "/mr/c", watch=true) lets new coordinator be elected

/[ we are not the coordinator

wait for watch event — watch

— potential replacement
coordinators can wait w/o polling
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REQUIREMENTS FOR SOLUTION

— *want to elect a replacement
— * must cope with crash in the middle of updating state in ZK
— * must cope with possibility that the coordinator *didn't* fail!
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REQUIREMENT 1: ELECT NEW COORD

— client failure -> client stops sending keep-alive messages to ZK

— no keep-alives -> ZK leader times out and terminates the session
— session termination -> ZK leader deletes session's ephemeral files
— and ignores further requests from that session

— ephemeral deletions are A-linearizable ZK ops

— now a hew MR coordinator can elect itself
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REQUIREMENT 2: ATOMICITY

— what if the MR coordinator crashes while updating state in ZK?

— maybe store all data in a single ZK file
— individual setData() calls are atomic (all or nothing vs failure)

— what if there are multiple znodes containing state data?
— use paper's "ready" file scheme
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REQUIREMENT 3: DEAL WITH OLD COORD

— what if the coordinator is alive and thinks it is still coordinator, but ZK
has decided it is dead and deleted its ephemeral /mr/c file”?

— a new coordinator will likely be elected.
— will two computers think they are the coordinator?
— this could happen.

— can the old coordinator modify state in ZK?

— this cannnot happen!
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REQUIREMENT 3: DEAL WITH OLD COORD

— when ZK times out a client's session, two things happen atomically:

—  ZK deletes the clients ephemeral nodes.
—  ZK stops listening to the session -- will reject all operations.

— S0 old coordinator can no longer modify or read data in ZK!

— ifittries, its client ZK library will raise an exception
— forcing the client to realize it is no longer coordinator
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REQUIREMENT 3: DEAL WITH OLD COORD

— an important pattern in distributed systems:

— asingle entity (e.g. ZK) decides which computers are alive or dead
— sometimes called a failure detector

— It may not be correct, e.g. if the network drops messages

— but everyone obeys Iits decisions

— agreement is more important than being right, to avoid split brain
— but possibility of being wrong => may need to fence
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REQUIREMENT 3: DEAL WITH OLD COORD

— what if coordinator interacts with entities (e.g., workers) other than
ZK?

— that don't know about the coordinator's ZK session state.
— they may need to fence (i.e. ignore deposed coordinator) -- how?

— Idea: worker could "watch" leader znode in ZK to learn of changes.
— not perfect: window between change and watch notification arrival.
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REQUIREMENT 3: DEAL WITH OLD COORD

—ldea: each new coordinator gets an increasing "epoch” number.
— from afile in ZK.
— coordinator sends epoch in each message to workers.
— workers remember highest epoch they have seen.
— workers reject messages with epochs smaller than highest seen.
— so they'll ignore a superseded coordinator once they
— See a newer coordinator.
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Performance




PERFORMANCE OPTIMIZATION

— Data must fit in memory, so reads are fast (no need to read disk).
— So you can't store huge quantities of data in ZooKeeper.

— Writes (log entries) must be written to disk, and waited for.

— So committed updates aren't lost in a crash or power failure.
— Hurts latency; batching can help throughput.

— Periodically, complete snapshots are written to disk.
— Fuzzy technique allows snapshotting concurrently with write operations.
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PERFORMANCE OPTIMIZATION

— emphasis is on handling many reading/watching clients

— 1) many ZK follower servers; clients are spread over them for parallelism
— client sends all operations to its ZK follower

—  ZK follower executes reads locally, from its replica of ZK data

— to avoid loading the ZK leader

—  ZK follower forwards writes to ZK leader

— 2) watch, not poll

— the ZK follower (not the ZK leader) does the work
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PERFORMANCE OPTIMIZATION

— 3) clients of ZK can launch async operations

— l.e. send request; completion notification delivered to code
separately

— unlike RPC

— aclient can launch many writes without waiting

—  ZK processes them efficiently in a batch; fewer msgs, disk writes
—  client library numbers them, ZK executes them in that order

— e.g. to update a bunch of znodes then create "ready" znode
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HOW IS THE PERFORMANCE?

— Qpverall, can handle 10s of thousands of

10000 Throughput of saturated system _ Opera‘tlons / SeCOnd-

soooo | 33overs — Is this a lot? Enough?

b2 — Why do the lines go up as they move to the
50000 right?

40000

Operations per second

— Why does the x=0 performance go down as the
number of servers increases”?

30000
20000

10000 f

e — Why does the "3 servers" line change to be
Percentage cfesdrequests worst at 100% reads?
Figure 5: The throughput performance of a saturated sys- — VVhat might limit it to 20,0007 Why not 200,0007

tem as the ratio of reads to writes vary.

— Each opis a 1000-byte write...
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WHAT ABOUT RECOVERY TIME?

Time series with failures
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Figure 8: Throughput upon failures.
— Follower failure -> just a decrease In total throughput.

— Leader failure -> a pause for timeout and election.
— Visually, on the order of a few seconds.
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ZOOKEEPER IS VERY WIDELY USED

— see ZooKeeper's Wikipedia page for a list of projects that use it

— often used as a kind of fault-tolerant name service
— what's the current coordinator's IP address”? what workers exist?

— can be used to simplify overall fault-tolerance strategy

— store all state in ZK e.g. MR queue of jobs, status of tasks
— then service servers needn't themselves replicate
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WHY IT IS CALLED ZOOKEEPER?

coordlnate

h”s“ncsi'é A

@hadaap

ARIE
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NEXT MONDAY: LAB DAY

— We will implement a Leader Election service with ZooKeeper
— Please setup the ZooKeeper on your laptop before class!

Process 1: Process 2: Process 3:
| joined the cluster.
| became leader!

| joined the cluster. | joined the cluster.

| am following node 1! | am following node 1!
| left the cluster.

| became leader!
| joined the cluster. | am following node 2!

| am following node 2!
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TAKEAWAYS

—Zookeeper provides simple but convenient interface for coordination.
— Key concepts: session, znode types, watch..

—Efficiency and correctness guarantees depend on how clients use them.

—Next class: [Lab Day] Implement Leader Election with ZooKeeper
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