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AGENDA
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– Motivation: MapReduce Coordinator

– Programming with ZooKeeper
–  Interface
–  Code Example

– Performance



WHY ARE WE READING THIS PAPER?
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– A simpler foundation for fault-tolerant applications.
–  the go-to application if you just start learning distributed systems

– High-performance in a real-life service built on Raft-like replication.

– Also because it's very widely used.



PROBLEM WITH SINGLE COORDINATOR
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– if we wanted to make a fault-tolerant service like MR coordinator,
–   we could replicate with Raft, and that would be OK!

Master 

Worker Worker Worker



PROBLEM WITH SINGLE COORDINATOR
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– but building directly on Raft is complex
–   a replicated state machine is awkward to program

– you can think of state machine replication (Raft) as replicating
–   the computation; the state is replicated as a side-effect.

– can we replicate state without replicating computation?
–  yes: use fault-tolerant storage, for example ZooKeeper
–  easier to write the MR coord than with replicated state machine
–  ordinary straight-line code, plus "save" calls

Worker Worker Worker

M1

M2 M3



NEW PARADIGM W/ ZOOKEEPER

7

–  now what if MR coord fails? 
–  we weren't replicating it on a backup coord server

–     but we don't need one!

–   just pick any computer, start MR coord s/w on it,
–     have it read state from ZK.

–   new coord can pick up where failed one left off.
–   makes the most sense in a cloud

–     easy to allocate a replacement server

Worker Worker Worker

M1 M2

ZooKeeper

X
who is new 

coord?

new coord is M2 
(ip addr)

X



WHAT MIGHT MR COORD STORE IN ZK?
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–   coord's IP addr, set of jobs, status of tasks, set of workers, 
assignments

–   update data in ZK on each change
–   (but big data itself in GFS, not ZK)
–   ZK acting as a "configuration service"

–     helps MR coord and worker find each other



NEXT: CHALLENGES
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–   detect MR coord failure
–   elect new MR coord (one at a time! no split brain!)
–   new coord needs to be able to recover/repair state read from ZK

–     what if old coord crashed midway through complex update?

–   what if old coord doesn't realize it's been replaced
–     can it still read/write state in ZK?
–     can it affect other entities incorrectly? e.g. tell workers to do things?

–  performance



ZooKeeper Architecture
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ARCHITECTURE
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ZooKeeper Interface
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ZOOKEEPER DATA MODEL
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–   the state: a file-system-like tree of znodes
–   file names, file content, directories, path names

–     directories help different apps avoid interfering

–   each znode has a version number (?)
–   types of znodes:

–     regular
–     ephemeral
–     sequential: name + seqno



OPERATIONS (CREATE)
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–   s = openSession()
–   create(s, path, data, flags)

–     exclusive -- fails if path already exists
–     flags specify types: regular, ephemeral, sequential

s = openSession()
create(s, "/r")
getChildren(s, "/")
=> /r
create(s, "/r")
=> false, already exists

s = openSession()
create(s, "/r", ephemeral=true)
getChildren(s, "/")
=> /r
closeSession(s) // or crash
s2 = openSession()
getChildren(s2, "/")
=> null

s = openSession()
create(s, "/r", sequential=true)
create(s, "/r", sequential=true)
getChildren(s, "/")
=> /r0000000001, /r0000000002



OPERATIONS (OTHERS)
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–   exists(s, path, watch)
–     watch=true asks for notification if path is later created/deleted

–   getData(s, path, watch) -> data, version
–   setData(s, path, data, version)

–     if znode.version = version, then update

–   getChildren(s, path, watch)
–   delete(s, path, watch)
–   these throw an exception if the ZK server says it has terminated the session

– so that application won't continue



OPERATIONS
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– ZooKeeper API well tuned for concurrency and synchronization:
–   + exclusive file creation; exactly one concurrent create returns success
–   + getData()/setData(x, version) supports mini-transactions
–   + sessions help cope with client failure (e.g. release locks)
–   + sequential files create order among multiple clients
–   + watches avoid costly repeated polling



Programming Example
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EXAMPLE: SIMPLE LOCK
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s = createSession
while true:
    if create(s, "/lock", ephemeral=true)
        // go ahead and do stuff
    else if exists(s, "/lock", watch=true)
        wait for watch event

Lock Unlock

delete(s, "/lock")

Problem: Herd effect
If many clients wait for a lock, they will all vie for the lock 
when it is released but one client can get the lock.



EXAMPLE: LOCK WITHOUT HERD EFFECT
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s = createSession
n = create(s, "/lock/lock-", 
ephemeral=true, sequential=true)
while true:
    C= getChildren(s, "/lock", false)
    if n is lowest znode in C, break
    p = znode in C ordered just before n
    if exists(s, p, watch=true) 
       wait for watch event

Lock Unlock

delete(s, n)

Why this design works?



EXAMPLE: LOCK WITHOUT HERD EFFECT
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–   Q: could a lower-numbered file be created after getChildren()?
–   Q: can watch fire before it is the client's turn?

     lock-10 <- current lock holder
     lock-11 <- next one
     lock-12 <- my request

–   A: yes     
–   if client that created lock-11 dies before it gets the lock, the
–   watch will fire but it isn't my turn yet.



EXAMPLE: MAPREDUCE COORDINATOR ELECTION
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    s = openSession()
    while true:
      if create(s, "/mr/c", ephemeral=true)
        // we are the coordinator!
        setData(s, "/mr/ip", ...)
      else if exists(s, "/mr/c", watch=true)
        // we are not the coordinator
        wait for watch event

–   exclusive create
–     if multiple clients concurrently 

attempt, only one will succeed

–   ephemeral znode
–     coordinator failure automatically 

lets new coordinator be elected

–   watch
–     potential replacement 

coordinators can wait w/o polling



REQUIREMENTS FOR SOLUTION

22

–   * want to elect a replacement
–   * must cope with crash in the middle of updating state in ZK
–   * must cope with possibility that the coordinator *didn't* fail!



REQUIREMENT 1: ELECT NEW COORD
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–   client failure -> client stops sending keep-alive messages to ZK
–   no keep-alives -> ZK leader times out and terminates the session
–   session termination -> ZK leader deletes session's ephemeral files
–                          and ignores further requests from that session
–                          ephemeral deletions are A-linearizable ZK ops
–   now a new MR coordinator can elect itself



REQUIREMENT 2: ATOMICITY
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– what if the MR coordinator crashes while updating state in ZK?
–   maybe store all data in a single ZK file

–     individual setData() calls are atomic (all or nothing vs failure)

–   what if there are multiple znodes containing state data?
–     use paper's "ready" file scheme



REQUIREMENT 3: DEAL WITH OLD COORD
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– what if the coordinator is alive and thinks it is still coordinator, but ZK 
has decided it is dead and deleted its ephemeral /mr/c file?

–   a new coordinator will likely be elected.
–   will two computers think they are the coordinator?

–     this could happen.

–   can the old coordinator modify state in ZK?
–     this cannnot happen!



REQUIREMENT 3: DEAL WITH OLD COORD
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–   when ZK times out a client's session, two things happen atomically:
–     ZK deletes the clients ephemeral nodes.
–     ZK stops listening to the session -- will reject all operations.

–   so old coordinator can no longer modify or read data in ZK!
–     if it tries, its client ZK library will raise an exception
–     forcing the client to realize it is no longer coordinator



REQUIREMENT 3: DEAL WITH OLD COORD
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–   an important pattern in distributed systems:

–   a single entity (e.g. ZK) decides which computers are alive or dead
–    sometimes called a failure detector

–   it may not be correct, e.g. if the network drops messages
–   but everyone obeys its decisions
–   agreement is more important than being right, to avoid split brain
–   but possibility of being wrong => may need to fence



REQUIREMENT 3: DEAL WITH OLD COORD
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–   what if coordinator interacts with entities (e.g., workers) other than 
ZK?

–   that don't know about the coordinator's ZK session state.
–   they may need to fence (i.e. ignore deposed coordinator) -- how?

–   idea: worker could "watch" leader znode in ZK to learn of changes.
–   not perfect: window between change and watch notification arrival.



REQUIREMENT 3: DEAL WITH OLD COORD
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– idea: each new coordinator gets an increasing "epoch" number.
–   from a file in ZK.
–   coordinator sends epoch in each message to workers.
–   workers remember highest epoch they have seen.
–   workers reject messages with epochs smaller than highest seen.
–   so they'll ignore a superseded coordinator once they 
–     see a newer coordinator.



Performance
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PERFORMANCE OPTIMIZATION
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–   Data must fit in memory, so reads are fast (no need to read disk).
–     So you can't store huge quantities of data in ZooKeeper.

–   Writes (log entries) must be written to disk, and waited for.
–    So committed updates aren't lost in a crash or power failure.
–    Hurts latency; batching can help throughput.

–   Periodically, complete snapshots are written to disk.
–    Fuzzy technique allows snapshotting concurrently with write operations.



PERFORMANCE OPTIMIZATION
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–   emphasis is on handling many reading/watching clients
–   1) many ZK follower servers; clients are spread over them for parallelism
–      client sends all operations to its ZK follower
–      ZK follower executes reads locally, from its replica of ZK data
–        to avoid loading the ZK leader
–      ZK follower forwards writes to ZK leader
–   2) watch, not poll
–      the ZK follower (not the ZK leader) does the work



PERFORMANCE OPTIMIZATION
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–   3) clients of ZK can launch async operations
–      i.e. send request; completion notification delivered to code 

separately
–           unlike RPC
–      a client can launch many writes without waiting
–      ZK processes them efficiently in a batch; fewer msgs, disk writes
–      client library numbers them, ZK executes them in that order
–      e.g. to update a bunch of znodes then create "ready" znode



HOW IS THE PERFORMANCE?
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–   Overall, can handle 10s of thousands of 
operations / second.
–     Is this a lot? Enough?

–   Why do the lines go up as they move to the 
right?

–   Why does the x=0 performance go down as the 
number of servers increases?

–   Why does the "3 servers" line change to be 
worst at 100% reads?

–   What might limit it to 20,000? Why not 200,000?
–     Each op is a 1000-byte write...



WHAT ABOUT RECOVERY TIME?
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–   Follower failure -> just a decrease in total throughput.
–   Leader failure -> a pause for timeout and election.

–     Visually, on the order of a few seconds.



ZOOKEEPER IS VERY WIDELY USED
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–   see ZooKeeper's Wikipedia page for a list of projects that use it
–   often used as a kind of fault-tolerant name service

–     what's the current coordinator's IP address? what workers exist?

–   can be used to simplify overall fault-tolerance strategy
–     store all state in ZK e.g. MR queue of jobs, status of tasks
–     then service servers needn't themselves replicate



WHY IT IS CALLED ZOOKEEPER?
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...

coordinate



– We will implement a Leader Election service with ZooKeeper
– Please setup the ZooKeeper on your laptop before class!

NEXT MONDAY: LAB DAY
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Process 1:
I joined the cluster.
I became leader!

I left the cluster.

I joined the cluster.
I am following node 2!

Process 2:

I joined the cluster.
I am following node 1!

I became leader!

Process 3:

I joined the cluster.
I am following node 1!

I am following node 2!



TAKEAWAYS
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–Zookeeper provides simple but convenient interface for coordination.
– Key concepts: session, znode types, watch.. 

–Efficiency and correctness guarantees depend on how clients use them.

–Next class: [Lab Day] Implement Leader Election with ZooKeeper
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