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CONTEXT
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– Today we continue talking about Raft, but in more details.



GAME: CONSENSUS (REVENGE)! 
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– Each student votes on an integer between 1 - 100.
– Can only vote once, repeated votes become invalid.

– Win: if the majority of voters have chosen the same number, everyone in the 
quorum gets extra credits in the final.

– Lose: no quorum reached.
– Extra: before checking results, Chang can void a number.
– Extra2: n malicious students have joined the game.

– Their goal is to create a split and fail the quorum.

– You have 5 min to discuss a strategy.
– Submit your votes to https://shorturl.at/jCT15

https://shorturl.at/jCT15


GOAL: REPLICATED LOG 
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– Replicated log => replicated state machine 
– All servers execute same commands in same order

– Consensus module ensures proper log replication 



RAFT OVERVIEW 
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– 1. Leader election
– 2. Normal operation (basic log replication)
– 3. Safety and consistency after leader changes 
– 4. Neutralizing old leaders
– 5. Client interactions



SERVER STATES 
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– At any given time, each server is either:
– Leader: handles all client interactions, log replication 
– Follower: completely passive
– Candidate: used to elect a new leader 

– Normal operation: 1 leader, N-1 followers 
– Exercise: how to states transit to others?



STATE TRANSITION
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– Servers start as followers 
– Leaders send heartbeats (empty AppendEntries RPCs) to maintain  

authority over followers 
– If electionTimeout elapses with no RPCs (100-500ms), follower 

assumes leader has crashed and starts new election 



TERMS (AKA EPOCHS) 
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– Time divided into terms
– Election (either failed or resulted in 1 leader)
– Normal operation under a single leader 

– Each server maintains current term value
– Key role of terms: identify obsolete information 



ELECTIONS
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– Start election: 
– Increment current term, change to candidate state, vote for self 

– Send Request Vote to all other servers, retry until either: 
– 1. Receive votes from majority of servers: 

– Become leader 
– Send AppendEntries heartbeats to all other servers 

– 2. Receive RPC from valid leader: 
– Return to follower state 

– 3. No-one win selection (election timeout elapses): 
– Increment term, start new election 



TWO PROPERTIES
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– Safety
– only good things happen

– Liveness
– good things will eventually happen



ELECTIONS
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– Safety: allow at most one winner per term 
– Each server votes only once per term (persists on disk)
– Two different candidates can’t get majorities in same term 

– Liveness: some candidate eventually wins
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT 



LOG STRUCTURE 
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– Log entry = < index, term, command > 
– Log stored on stable storage (disk); survives crashes 
– Entry committed -> stored on majority of servers 

– Durable / stable, will eventually be executed by state machines



NORMAL OPERATION 
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– Client sends command to leader 
– Leader appends command to its log 
– Leader sends AppendEntries RPCs to followers 
– Once new entry committed: 

– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines 



NORMAL OPERATION 
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– Crashed / slow followers?
– Performance is “optimal” in common case: 

– Leader retries RPCs until they succeed 
– One successful RPC to any majority of servers 
– Followers pass committed commands to their state machines 



LOG OPERATION: HIGHLY COHERENT 
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– If log entries on different server have same index and term: 
– Store the same command => one leader, one entry, one index, one term + log 

position never change
– Logs are identical in all preceding entries => consistency check

– If given entry is committed, all preceding also committed 



LOG OPERATION: CONSISTENCY CHECK 
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– AppendEntries has <index,term> of entry preceding new ones 
– Follower must contain matching entry; otherwise it rejects 
– Implements an induction step, ensures coherency 



LEADER CHANGES 
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– New leader’s log is truth, no special steps, start normal operation 
– Will eventually make follower’s logs identical to leader’s
– Old leader may have left entries partially replicated 

– Multiple crashes can leave many extraneous log entries (?)



SAFETY REQUIREMENT 
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– Raft safety property: If leader has decided log entry is committed, entry will be 
present in logs of all future leaders 

– Why does this guarantee higher-level goal?
– 1. Leaders never over write entries in their logs
– 2. Only entries in leader’s log can be committed
– 3. Entries must be committed before applying to state machine 

Once log entry applied to a state machine, no other state 
machine must apply a different value for that log entry 



PICKING THE BEST LEADER 
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– Elect candidate most likely to contain all committed entries 
– In RequestVote, candidates incl. index + term of last log entry 
– Voter V denies vote if its log is “more complete”: (newer term) or (entry in higher 

index of same term) 
– Leader will have “most complete” log among electing majority 



COMMITTING ENTRY FROM CURRENT TERM 
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– Case #1: Leader decides entry in current term is committed
– Safe: leader for term 3 must contain entry 4 



COMMITTING ENTRY FROM EARLIER TERM 
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– Case #2: Leader trying to finish committing entry from earlier 
– Entry 3 not safely committed: 

– s5 can be elected as leader for term 5 (how?)
– If elected, it will overwrite entry 3 on s1, s2, and s3 



NEW COMMITMENT RULES 
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– Storing on a majority does not mean the entry is committed!
– For leader to decide entry is committed: 

– Entry stored on a majority
– ≥1 new entry from leader’s term also on majority  

– Example; Once e4 committed, s5 cannot be elected leader for term 5, 
and e3 and e4 both safe 



CHALLENGE: LOG INCONSISTENCIES 
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– Leader changes can result in log in consistencies 



REPAIRING FOLLOWER LOGS 
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– New leader must make follower logs consistent with its own 
– Delete extraneous entries 
– Fill in missing entries 

– Leader keeps nextIndex for each follower:  
– Index of next log entry to send to that follower 
– Initialized to (1 + leader’s last index) 

– If AppendEntries consistency check fails, decrement nextIndex, try again   



REPAIRING FOLLOWER LOGS 
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NEUTRALIZING OLD LEADERS 
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– Leader temporarily disconnected  
– other servers elect new leader  

– old leader reconnected
– old leader attempts to commit log entries 

– Terms used to detect stale leaders (and candidates)   
– Every RPC contains term of sender
– Sender’s term < receiver:  

– Receiver: Rejects RPC (via ACK which sender processes...) 
– Receiver’s term < sender: 

– Receiver reverts to follower, updates term, processes RPC 

– Election updates terms of majority of servers 
– Deposed server cannot commit new log entries 



CLIENT PROTOCOL 

27

– Send commands to leader  
– If leader unknown, contact any server, which redirects client to leader  

– Leader only responds after command logged, committed,  
and executed by leader 

– If request times out(e.g., leader crashes): 
– Client reissues command to new leader (after possible redirect) 

– Ensure exactly-once semantics even with leader failures
– E.g., Leader can execute command then crash before responding 
– Client should embed unique request ID in each command
– This unique request ID included in log entry
– Before accepting request, leader checks log for entry with same id 



GAME: CONSENSUS RESULT
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– https://shorturl.at/jCT15

https://shorturl.at/jCT15


TAKEAWAYS
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– Node roles: Leader, Candidate, Follower
– Terms: to identify obsolete information
– Committed log: durable on the majority of nodes (+ new entry rule)
– Repair logs: Delete extraneous entries + Fill in missing entries
– Next class: Midterm Review. 
– Mon 3/11 Hacker Day, no class, 3/12 Lab2A Deadline.
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