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CONTEXT

— Today we continue talking about Raft, but in more detalils.




GAME: CONSENSUS (REVENGE)!

— Each student votes on an integer between 1 - 100.

— Can only vote once, repeated votes become invalid.

— Win: if the majority of voters have chosen the same number, everyone in the
guorum gets extra credits in the final.

— Lose: no quorum reached.
— Extra: before checking results, Chang can void a number.

— Extra2: n malicious students have joined the game.
— Their goal is to create a split and fail the quorum.

— You have 5 min to discuss a strategy.
— Submit your votes to https://shorturl.at/[CT15
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https://shorturl.at/jCT15

GOAL: REPLICATED LOG

Clients

Servers

— Replicated log => replicated state machine
— All servers execute same commands In same order

— Consensus module ensures proper log replication




RAFT OVERVIEW

— 1. Leader election

— 2. Normal operation (basic log replication)

— 3. Safety and consistency after leader changes
— 4. Neutralizing old leaders

— 5. Client interactions




SERVER STATES

— At any given time, each server is either:
— Leader: handles all client interactions, log replication
— Follower: completely passive
— Candidate: used to elect a new leader

— Normal operation: 1 leader, N-1 followers
— Exercise: how to states transit to others?
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STATE TRANSITION

— Servers start as followers

— Leaders send heartbeats (empty AppendEntries RPCs) to maintain
authority over followers

— If electionTimeout elapses with no RPCs (100-500ms), follower
assumes leader has crashed and starts new election
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TERMS (AKA EPOCHS)

Term 1 Term2 Term 3 Term 4 Term 5

Elections Split Vote Normal Operation

— Time divided Into terms

— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

— Each server maintains current term value
— Key role of terms: identify obsolete information




ELECTIONS

— Start election:
— Increment current term, change to candidate state, vote for self

— Send Request Vote to all other servers, retry until either:
— 1. Receive votes from majority of servers:
— Become leader
— Send AppendEntries heartbeats to all other servers
— 2. Receive RPC from valid leader:
— Return to follower state
— 3. No-one win selection (election timeout elapses):
— Increment term, start new election




TWO PROPERTIES

— Safety
— only good things happen

— Liveness
— good things will eventually happen
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ELECTIONS

— Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

——————————————————————————————————
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— Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]
— One usually initiates and wins election before others start
— Works well if T >> network RTT
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LOG STRUCTURE

term
W

command J

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1 1 2 3

add [cmp| ret [mov| jmp

1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1

add |[cmp

1 1 1 2 3 3 3

add |cmp| ret [mov| jmp | div | shl

»

— Log entry = < index, term, command >

log index
leader

> followers

committed entries

— Log stored on stable storage (disk); survives crashes

— Entry committed -> stored on majority of servers
— Durable / stable, will eventually be executed by state machines
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— Client sends command to leader
— Leader appends command to its log
— Leader sends AppendEntries RPCs to followers

— Once new entry committed:
— Leader passes command to its state machine, sends result to client
— Leader piggybacks commitment to followers in later AppendEntries
— Followers pass committed commands to their state machines
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NORMAL OPERATION
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— Crashed / slow followers?

— Performance is “optimal” in common case:
— Leader retries RPCs until they succeed
— One successful RPC to any majority of servers
— Followers pass committed commands to their state machines
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LOG OPERATION: HIGHLY COHERENT

1 2 3 4 5 6

1 1 1 2 3 3
server? add |cmp| ret movljmp| div |
1 1 1 2 3 4
SoIVer2 |ag,
— If log entries on different server have same index and term:

— Store the same command => one leader, one entry, one index, one term + log
position never change

— Logs are identical in all preceding entries => consistency check

— If given entry is committed, all preceding also committed
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LOG OPERATION: CONSISTENCY CHECK

1 2 3:_4_:5
T 111 121 3

leader add |cmp| ret |mov ij AppendEntries succeeds:

matching entry
follower a;d T 112

cmp| ret |mov

T 11111213
leader add

cmp| ret [mov ij AppendEntries fails:
mismatch
follower | % [ 1|1 | X

add [cmp| ret | shl

— AppendEntries has <index,term> of entry preceding new ones
— Follower must contain matching entry; otherwise it rejects
— Implements an induction step, ensures coherency
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LEADER CHANGES

— New leader’s log is truth, no special steps, start normal operation
— Wil eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

— Multiple crashes can leave many extraneous log entries (?)

log index 1 2 3 4 5 6 7
erm” siF1|1]5]6 66
w11 ]s5le[7]7]7
ss|1]1]5]5
w1124
ss| 11221333
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SAFETY REQUIREMENT

Once log entry applied to a state machine, no other state
machine must apply a different value for that log entry

— Raft safety propenty: If leader has decided log entry is committed, entry will be
present in logs of all future leaders

— Why does this guarantee higher-level goal?
— 1. Leaders never over write entries in their logs
— 2. Only entries in leader’s log can be committed
— 3. Entries must be committed before applying to state machine

- Committed — Present in future leaders’ logs A

Restrictions on J \, Restrictions on

o commitment leader election y
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PICKING THE BEST LEADER

-----

£ ]
, st| 1|1 [1]2if2] Committed?
Can’t tell N —
which entries s2| 1| 1| 1] 2
committed! f11122 a) Unavailable during
l l leader transition

_____________________

— Elect candidate most likely to contain all committed entries
— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote If its log Is “more complete™. (newer term) or (entry in higher
index of same term)

— Leader will have "most complete” log among electing majority
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COMMITTING ENTRY FROM CURRENT TERM

s1|111]12]2 -— Leader for term 2

g2 1 [1]12]2

s3| 1| 1] 22 i«— AppendEntries just succeeded

—————

s4[1]1]2 Can’t be elected as

" leader for term 3

— Case #1: Leader decides entry in current term is committed
— Safe: leader for term 3 must contain entry 4
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COMMITTING ENTRY FROM EARLIER TERM

1 2 3 4 5

g1| 11112 4
so| 1 [ 1]2
—fi

ss| 11 2]i = AppendEntries just succeeded

Leader for term 4

sa4| 1|1

ss| 1| 1]13|3]|3

— Case #2: Leader trying to finish committing entry from earlier

— Entry 3 not safely committed:

— sb5 can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3 on s1, s2, and s3
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NEW COMMITMENT RULES

1 2 3 4 5
si|1]1]2]4

Leader for term 4

so| 1124

s3] 11214

s4| 1|1

ss5| 1113 ]3]3

— Storing on a majority does not mean the entry is committed!

— For leader to decide entry is committed:
— Entry stored on a majority
— =1 new entry from leader’s term also on majority

— Example; Once e4 committed, s5 cannot be elected leader for term 5,
and e3 and e4 both safe
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CHALLENGE: LOG INCONSISTENCIES

1 2 3 4 5 6 7 8 9 10 11 12
Leader for term 8 111114455 I 6| 6 ‘ 6
A i
al1[1[1]aflal5]5]6]6] o
@) l____________l______i____(:\ Missing
e ?"l—--\l
Possible _ @ [1]1|1]4|4]5]5 | 6|6 ‘ 6i(6 |
followers @11 ]1a]4a]5]5 | 6|6 ‘ 6§| 7 ‘ Al
| L1 1 1.\~ Extraneous
oo TTTEE R W .
@ |1 [1]1]4|4]4]a i / Entries
- K
---------------- —_—
M1 |1i]2]2]2|3[3]3]3]3]

———————————————————————————————

— Leader changes can result in log in consistencies
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REPAIRING FOLLOWER LOGS

nextindex

|
1 2 3 4 5 6 7 8 9 110, 11 12

Leader for term 7 1111212151516 6 16_: ......
: '2VaVaVYaVYavYal

@ [1]1]|1]4
Followers < PPV
by |11 1]2 2I2 31313|3]3

-~

— New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

— Leader keeps nextindex for each follower:

— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

— If AppendEntries consistency check fails, decrement nextindex, try again
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REPAIRING FOLLOWER LOGS

nextindex
3?156789101112
1

TITETETSTeTs]

(;:,)111<‘¥l

Before repair (f) |1 |1 ]|1|2(2|2[3|3]|3]|3]3

v

After repair (f) | 1 | 1

1 2
111

Leader for term 7

-
AN

25



NEUTRALIZING OLD LEADERS

— Leader temporarily disconnected
— other servers elect new leader
— old leader reconnected
— old leader attempts to commit log entries

— Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender
— Sender’s term < receiver:
— Receiver: Rejects RPC (via ACK which sender processes...)
— Recelver’s term < sender:
— Receiver reverts to follower, updates term, processes RPC

— Election updates terms of majority of servers
— Deposed server cannot commit new log entries
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CLIENT PROTOCOL

— Send commands to leader
— If leader unknown, contact any server, which redirects client to leader
— Leader only responds after command logged, committed,
and executed by leader

— If request times out(e.qg., leader crashes):
— Client reissues command to new leader (after possible redirect)

— Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command
— This unigue request ID included in log entry
— Before accepting request, leader checks log for entry with same id
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GAME: CONSENSUS RESULT

— https://shorturl.at/|[CT15



https://shorturl.at/jCT15
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TAKEAWAYS

— Node roles: Leader, Candidate, Follower

— Terms: to identify obsolete information

— Committed log: durable on the majority of nodes (+ new entry rule)
— Repair logs: Delete extraneous entries + Fill in missing entries

— Next class: Midterm Review.

— Mon 3/11 Hacker Day, no class, 3/12 Lab2A Deadline.
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