CLOUD COMPUTING

Consensus (Contd.)

Prof. Chang Lou, UVA CS, Spring 2024

CONTEXT

— Today we continue talking about Raft, but in more detalils.

GAME: CONSENSUS (REVENGE)!

— Each student votes on an integer between 1 - 100.

— Can only vote once, repeated votes become invalid.

— Win: if the majority of voters have chosen the same number, everyone in the
guorum gets extra credits in the final.

— Lose: no quorum reached.
— Extra: before checking results, Chang can void a number.

— Extra2: n malicious students have joined the game.
— Their goal is to create a split and fail the quorum.

— You have 5 min to discuss a strategy.
— Submit your votes to https://shorturl.at/[CT15

3

https://shorturl.at/jCT15

GOAL: REPLICATED LOG

Clients

Servers

— Replicated log => replicated state machine
— All servers execute same commands In same order

— Consensus module ensures proper log replication

RAFT OVERVIEW

— 1. Leader election

— 2. Normal operation (basic log replication)

— 3. Safety and consistency after leader changes
— 4. Neutralizing old leaders

— 5. Client interactions

SERVER STATES

— At any given time, each server is either:
— Leader: handles all client interactions, log replication
— Follower: completely passive
— Candidate: used to elect a new leader

— Normal operation: 1 leader, N-1 followers
— Exercise: how to states transit to others?

(FoIIower) (Candidate) C Leader)

STATE TRANSITION

— Servers start as followers

— Leaders send heartbeats (empty AppendEntries RPCs) to maintain
authority over followers

— If electionTimeout elapses with no RPCs (100-500ms), follower
assumes leader has crashed and starts new election

¢ timeout, _ fos f
Imeout, new election receive votes from

start start election majority of servers

K(— ()

FoIIower) (Candidate) (Leader)

@ \>/ /
down” .)
discover server with

discover current leader higher term
or higher term

TERMS (AKA EPOCHS)

Term 1 Term2 Term 3 Term 4 Term 5

Elections Split Vote Normal Operation

— Time divided Into terms

— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

— Each server maintains current term value
— Key role of terms: identify obsolete information

ELECTIONS

— Start election:
— Increment current term, change to candidate state, vote for self

— Send Request Vote to all other servers, retry until either:
— 1. Receive votes from majority of servers:
— Become leader
— Send AppendEntries heartbeats to all other servers
— 2. Receive RPC from valid leader:
— Return to follower state
— 3. No-one win selection (election timeout elapses):
— Increment term, start new election

TWO PROPERTIES

— Safety
— only good things happen

— Liveness
— good things will eventually happen

10

ELECTIONS

— Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

——————————————————————————————————

talso | I ;
e OO0 00 mm,

get majority ‘“——/—---—= PN =
Servers

— Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]
— One usually initiates and wins election before others start
— Works well if T >> network RTT

11

LOG STRUCTURE

term
W

command J

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1 1 2 3

add [cmp| ret [mov| jmp

1 1 1 2 3 3 3 3
add |cmp| ret [mov| jmp | div | shl | sub
1 1

add |[cmp

1 1 1 2 3 3 3

add |cmp| ret [mov| jmp | div | shl

»

— Log entry = < index, term, command >

log index
leader

> followers

committed entries

— Log stored on stable storage (disk); survives crashes

— Entry committed -> stored on majority of servers
— Durable / stable, will eventually be executed by state machines

12

.

fConsen
Module

)

N

SUsS

@0

add

jmp

o)

A

NORMAL OPERATION

2.0

J

jmp

)

add]

°r

S

shl
Consensus Con us
achine Module chine ule Madhine

4

e

@03

J

add|jmp

o)

)

— Client sends command to leader
— Leader appends command to its log
— Leader sends AppendEntries RPCs to followers

— Once new entry committed:
— Leader passes command to its state machine, sends result to client
— Leader piggybacks commitment to followers in later AppendEntries
— Followers pass committed commands to their state machines

13

NORMAL OPERATION
' R

m
/ Consensus Consensus

M;ule achine M;ule chine ule
A ng 41 ng

e CEnE | }
9 add jmpmovl slf\ JAS add jmp mov s JAS add jmpmovls)

— Crashed / slow followers?

— Performance is “optimal” in common case:
— Leader retries RPCs until they succeed
— One successful RPC to any majority of servers
— Followers pass committed commands to their state machines

14

LOG OPERATION: HIGHLY COHERENT

1 2 3 4 5 6

1 1 1 2 3 3
server? add |cmp| ret movljmp| div |
1 1 1 2 3 4
SoIVer2 |ag,
— If log entries on different server have same index and term:

— Store the same command => one leader, one entry, one index, one term + log
position never change

— Logs are identical in all preceding entries => consistency check

— If given entry is committed, all preceding also committed

15

LOG OPERATION: CONSISTENCY CHECK

1 2 3:_4_:5
T 111 121 3

leader add |cmp| ret |mov ij AppendEntries succeeds:

matching entry
follower a;d T 112

cmp| ret |mov

T 11111213
leader add

cmp| ret [mov ij AppendEntries fails:
mismatch
follower | % [1|1 | X

add [cmp| ret | shl

— AppendEntries has <index,term> of entry preceding new ones
— Follower must contain matching entry; otherwise it rejects
— Implements an induction step, ensures coherency

16

LEADER CHANGES

— New leader’s log is truth, no special steps, start normal operation
— Wil eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

— Multiple crashes can leave many extraneous log entries (?)

log index 1 2 3 4 5 6 7
erm” siF1|1]5]6 66
w11]s5le[7]7]7
ss|1]1]5]5
w1124
ss| 11221333

17

SAFETY REQUIREMENT

Once log entry applied to a state machine, no other state
machine must apply a different value for that log entry

— Raft safety propenty: If leader has decided log entry is committed, entry will be
present in logs of all future leaders

— Why does this guarantee higher-level goal?
— 1. Leaders never over write entries in their logs
— 2. Only entries in leader’s log can be committed
— 3. Entries must be committed before applying to state machine

- Committed — Present in future leaders’ logs A

Restrictions on J \, Restrictions on

o commitment leader election y

18

PICKING THE BEST LEADER

£]
, st| 1|1 [1]2if2] Committed?
Can’t tell N —
which entries s2| 1| 1| 1] 2
committed! f11122 a) Unavailable during
l l leader transition

— Elect candidate most likely to contain all committed entries
— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote If its log Is “more complete™. (newer term) or (entry in higher
index of same term)

— Leader will have "most complete” log among electing majority

19

COMMITTING ENTRY FROM CURRENT TERM

s1|111]12]2 -— Leader for term 2

g2 1 [1]12]2

s3| 1| 1] 22 i«— AppendEntries just succeeded

—————

s4[1]1]2 Can’t be elected as

" leader for term 3

— Case #1: Leader decides entry in current term is committed
— Safe: leader for term 3 must contain entry 4

20

COMMITTING ENTRY FROM EARLIER TERM

1 2 3 4 5

g1| 11112 4
so| 1 [1]2
—fi

ss| 11 2]i = AppendEntries just succeeded

Leader for term 4

sa4| 1|1

ss| 1| 1]13|3]|3

— Case #2: Leader trying to finish committing entry from earlier

— Entry 3 not safely committed:

— sb5 can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3 on s1, s2, and s3

21

NEW COMMITMENT RULES

1 2 3 4 5
si|1]1]2]4

Leader for term 4

so| 1124

s3] 11214

s4| 1|1

ss5| 1113]3]3

— Storing on a majority does not mean the entry is committed!

— For leader to decide entry is committed:
— Entry stored on a majority
— =1 new entry from leader’s term also on majority

— Example; Once e4 committed, s5 cannot be elected leader for term 5,
and e3 and e4 both safe

22

CHALLENGE: LOG INCONSISTENCIES

1 2 3 4 5 6 7 8 9 10 11 12
Leader for term 8 111114455 I 6| 6 ‘ 6
A i
al1[1[1]aflal5]5]6]6] o
@) l____________l______i____(:\ Missing
e ?"l—--\l
Possible _ @ [1]1|1]4|4]5]5 | 6|6 ‘ 6i(6 |
followers @11]1a]4a]5]5 | 6|6 ‘ 6§| 7 ‘ Al
| L1 1 1.\~ Extraneous
oo TTTEE R W .
@ |1 [1]1]4|4]4]a i / Entries
- K
---------------- —_—
M1 |1i]2]2]2|3[3]3]3]3]

———————————————————————————————

— Leader changes can result in log in consistencies

23

REPAIRING FOLLOWER LOGS

nextindex

|
1 2 3 4 5 6 7 8 9 110, 11 12

Leader for term 7 1111212151516 6 16_:
: '2VaVaVYaVYavYal

@ [1]1]|1]4
Followers < PPV
by |11 1]2 2I2 31313|3]3

-~

— New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

— Leader keeps nextindex for each follower:

— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

— If AppendEntries consistency check fails, decrement nextindex, try again

24

REPAIRING FOLLOWER LOGS

nextindex
3?156789101112
1

TITETETSTeTs]

(;:,)111<‘¥l

Before repair (f) |1 |1]|1|2(2|2[3|3]|3]|3]3

v

After repair (f) | 1 | 1

1 2
111

Leader for term 7

-
AN

25

NEUTRALIZING OLD LEADERS

— Leader temporarily disconnected
— other servers elect new leader
— old leader reconnected
— old leader attempts to commit log entries

— Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender
— Sender’s term < receiver:
— Receiver: Rejects RPC (via ACK which sender processes...)
— Recelver’s term < sender:
— Receiver reverts to follower, updates term, processes RPC

— Election updates terms of majority of servers
— Deposed server cannot commit new log entries

26

CLIENT PROTOCOL

— Send commands to leader
— If leader unknown, contact any server, which redirects client to leader
— Leader only responds after command logged, committed,
and executed by leader

— If request times out(e.qg., leader crashes):
— Client reissues command to new leader (after possible redirect)

— Ensure exactly-once semantics even with leader failures
— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command
— This unigue request ID included in log entry
— Before accepting request, leader checks log for entry with same id

27

GAME: CONSENSUS RESULT

— https://shorturl.at/|[CT15

https://shorturl.at/jCT15

[NIVERSITY
JVIRGINIA

TAKEAWAYS

— Node roles: Leader, Candidate, Follower

— Terms: to identify obsolete information

— Committed log: durable on the majority of nodes (+ new entry rule)
— Repair logs: Delete extraneous entries + Fill in missing entries

— Next class: Midterm Review.

— Mon 3/11 Hacker Day, no class, 3/12 Lab2A Deadline.

29

[UNIVERSITY
I\VIRGINIA

ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS
SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS SLIDES INCLUDES CONTENTS FROM PROF. DAN PORTS' DISTRIBUTED
SYSTEMS COURSE (UW)

