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CONTEXT
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– We learned how to achieve atomicity, isolation in a sharded 
database.  

– Today we learn how to achieve fault tolerance through replication. 
Problem of maintaining multiple replicated shards can ultimately be 
reduced to consensus.  

– We discuss Paxos and Raft, the best known consensus protocols.



GAME: CONSENSUS! 
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– Each student votes on an integer between 1 - 100.
– Can only vote once, repeated votes become invalid.

– Win: if the majority of voters have chosen the same number, everyone in 
the quorum gets extra credits in the final.

– Lose: no quorum reached.
– Extra: before checking results, Chang can void a number.

– Shouting out a number may not sound like a good idea now?

– You have 5 min to discuss a strategy.
– Submit your vote to https://shorturl.at/4Ig1l



OUTLINE 
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– Problem: Replicating ACID shards  

– Mock protocol with 2PC  

– Consensus protocols

– Raft Visuals 



Problem: Replicating ACID 
shards 

5



EXAMPLE: WEB SERVICE WITH TRANSACTIONS 
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– Assume: sharded database. Each DB 
shard runs an ACID engine (so runs 
2PL+WAL). The shards coordinate via 
2PC. 

– Question: Without shard replication, what 
fault tolerance problems can arise? 
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EXAMPLE: WEB SERVICE WITH TRANSACTIONS 
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– Fault tolerance problems w/o replication: 
– Data, WAL for each shard are stored on one disk. If 

disk dies, shard’s data is lost. Durability problem!  

– Even if disks don’t fail, recall that 2PC can block if a 
shard server fails at inopportune time. Transactions 
interacting with the failed server block, along with 
many new transactions that transitively depend on 
rows locked by the blocked transactions.  
Availability problems! 
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SOLUTION: REPLICATION 
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– Architecture: 
– Replicate each shard across multiple servers 

(each ACID, so they maintain WAL and do 2PL). 
– Replicas of a shard coordinate to maintain their 

state “in sync,” ideally giving the illusion that they 
are a single, (almost) always-on server. 

– 2PC is executed across replica groups (we’ll 
discuss how in future lectures). Because replica 
groups “never” die or become partitioned, 2PC 
“never” blocks. 
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QUESTION 1: WHAT STATE TO REPLICATE? 
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– Disk image? 
– In-memory image? 
– Locks? 
– ... Anything else? 



BASIC ANSWER: REPLICATE WAL 
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– Claim: If all replicas execute all WAL ops, in the same order, then 
all other state (DB image, locks, ...) will be reconstructed in the 
same way across replicas (assuming deterministic operation).  

– It can be useful to be able to push checkpoints of the DB to a 
recovering/new replica, but we’ll ignore that for now and focus on 
replicating the WAL. 



QUESTION 2: WHAT SEMANTIC TO REQUIRE? 
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– Requirement: all replicas apply (1) the same log entries,  
(2) in the same order. 

– Otherwise, inconsistencies can occur. 
– As examples, consider: 

– One replica skips log entry for an update while others apply it. 
– One replica receives two updates for a particular row in one order while another 

receives them reversed.  



QUESTION 3: HOW TO REPLICATE? 
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– Requirement: all replicas apply (1) the same log entries, (2) in the 
same order. 

– One idea: 2PC.  
– 2PC ensures that all participants either do all ops or  

don’t do any of the operations. 
– Could we use this protocol for WAL replication? 



Mock protocol based on 2PC 
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MOCK 2PC-BASED REPLICATION
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– A, B, C are replicas of a single shard. They need to coordinate to 
apply all WAL entries in the same order. 

– Q: how might it work and what problems would arise. 



MOCK DESIGN
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– One replica assigned as TC. TC decides on order of ops in the log 
and performs 2PC for each log entry, every time blocking for the 
protocol to finish before launching a 2PC for the next log entry. 

– This ensures that all replicas: 
– Apply all log entries (thanks to 2PC). 
– Apply log entries in the same order (thanks to sequential way in which TC 

performs log entry pushes to participants). 



PROBLEMS WITH MOCK 
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– NOT fault tolerant (but durable): 
– Because TC must wait for all replicas to reply that they are going to perform the 

update, the coordinator needs to block every time one replica is slow, 
disconnected, or dead. 

– But the mock does provide more durability than 2PC across shards. 

– When the coordinator dies, someone else must become coordinator. 
Yet, we must have only one (at most) coordinator, otherwise different 
coordinators may impose different orders on log entries. This is 
called leader election and is not addressed in 2PC, which assumes 
a static coordinator! 



Consensus protocols 

17
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CONSENSUS PROTOCOLS 
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– Require only a majority of nodes to be up at any time in order to 
make progress. 

– Similar to 2PC, but instead of waiting for all participants to respond, 
they wait for a majority of the replicas to respond. 
– In a fail-stop failure model (i.e., nodes are not malicious), 

the majority needed is a simple majority; i.e., one can tolerate f simultaneous 
failures with 2f+1 replicas. 

– In a malicious failure model, one needs a super-majority, i.e., one can tolerate f 
simultaneous failures with 3f+1 replicas. 



SIMPLE MAJORITIES 
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– There cannot exist two majorities in a given group at the same time. 
– This means that if a node obtains OKs from a majority of nodes – say in a first phase like 

2PC’s – then another node (e.g., another simultaneous coordinator) is guaranteed to not have 
obtained OKs from a majority of the nodes. 

– This lets us replace a dead Coordinator with a new one without introducing inconsistencies. 
That’s how we address the leader election problem. 

– Any two majorities of a group will overlap in at least one node. 
– This means that if an old Coordinator obtained OKs from a majority of the nodes, then sent 

COMMIT messages that were received by a majority of the nodes, and subsequently crashed 
before it could inform the other nodes of the COMMIT outcome, then a new Coordinator that 
is “elected” subsequently, will learn about the outcome by talking to any (other) majority, and 
so it can continue the commit process that the first (now dead) Coordinator began. 



PAXOS AND RAFT 
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– Paxos [Lamport-1998]: Original protocol. Solves the basic 
consensus problem as defined in the Agreement lecture 
(consensus on the value of a write-once register, with the 
consistency, validity, and termination requirements).  

– RAFT [Ongaro-Ousterhout-2014]: More recent, operates at a 
higher level of abstraction, and shows very clearly how to 
replicate the WAL (for example) to implement fault-tolerant 
transactions. 



LESLIE LAMPORT
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– Winner of the 2013 Turing Award
– Known for imposing clear, well-defined 

coherence on the seemingly chaotic behavior 
of distributed computing systems

– Also known for 
– LaTeX (typesetting system)
– Byzantine Fault Tolerance
– TLA+ (formal verification tools)
– ...



A BRIEF HISTORY OF PAXOS
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1989
1990

1998

~2005

2010s
2014

Viewstamped Replication – Liskov & Oki
Paxos – Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

First practical deployments

Widespread use!
Lamport wins Turing Award



first submitted in 1990, published in 1998, won ACM SIGOPS Hall of Fame Award in 2012
THE PART-TIME PARLIAMENT
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– The initial draft was obscure with an "archaeological" tone



– Three years after publishing original Paxos paper, Lamport 
published a simplified version to explain the protocol
– "The current version is 13 pages long, and contains no formula more 

complicated than n1 > n2."
– Maybe a bit over-simplified..

PAXOS MADE SIMPLE
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RAFT 
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John Ousterhout
Professor of Computer Science

Stanford University

Diego Ongaro
Ph.D., Computer Science

Stanford University



Diego Ongaro and John Ousterhout, 2014
RAFT 
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– Unfortunately, Paxos is quite difficult to understand, in spite of 
numerous attempts to make it more approachable... 

– ..we set out to find a new consensus algorithm that could provide a 
better foundation for system building and education. Our approach 
was unusual in that our primary goal was understandability: could 
we define a consensus algorithm for practical systems and 
describe it in a way that is significantly easier to learn than Paxos?"



https://thesecretlivesofdata.com/raft/
A PREVIEW OF RAFT W/ VISUALIZATION
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TAKEAWAYS
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– Reaching consensus in DS is crucial but challenging.
– Key: from a single static coordinator to majorities.
– Approach:Replicating WAL and ensure all logs in the same order.
– Next class: Consensus (contd.). 
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