
CS4740
CLOUD COMPUTING

Consensus

Prof. Chang Lou, UVA CS, Fall 2025

1

CONTEXT

2

– We learned how to achieve atomicity, isolation in a sharded
database.  

– Today we learn how to achieve fault tolerance through replication.
Problem of maintaining multiple replicated shards can ultimately be
reduced to consensus.  

– We discuss Paxos and Raft, the best known consensus protocols.

GAME: CONSENSUS!

3

– Each student votes on an integer between 1 - 100.
– Can only vote once, repeated votes become invalid.

– Win: if the majority of voters have chosen the same number, everyone in
the quorum gets extra credits in the final.

– Lose: no quorum reached.
– Extra: before checking results, Chang can void a number.

– Shouting out a number may not sound like a good idea now?

– You have 5 min to discuss a strategy.
– Submit your vote to https://shorturl.at/4Ig1l

OUTLINE

4

– Problem: Replicating ACID shards  

– Mock protocol with 2PC  

– Consensus protocols

– Raft Visuals

Problem: Replicating ACID
shards

5

EXAMPLE: WEB SERVICE WITH TRANSACTIONS

6

– Assume: sharded database. Each DB
shard runs an ACID engine (so runs
2PL+WAL). The shards coordinate via
2PC.

– Question: Without shard replication, what
fault tolerance problems can arise?

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

EXAMPLE: WEB SERVICE WITH TRANSACTIONS

7

– Fault tolerance problems w/o replication:
– Data, WAL for each shard are stored on one disk. If

disk dies, shard’s data is lost. Durability problem!  

– Even if disks don’t fail, recall that 2PC can block if a
shard server fails at inopportune time. Transactions
interacting with the failed server block, along with
many new transactions that transitively depend on
rows locked by the blocked transactions.  
Availability problems!

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

SOLUTION: REPLICATION

8

– Architecture:
– Replicate each shard across multiple servers

(each ACID, so they maintain WAL and do 2PL).
– Replicas of a shard coordinate to maintain their

state “in sync,” ideally giving the illusion that they
are a single, (almost) always-on server.

– 2PC is executed across replica groups (we’ll
discuss how in future lectures). Because replica
groups “never” die or become partitioned, 2PC
“never” blocks.

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

QUESTION 1: WHAT STATE TO REPLICATE?

9

– Disk image?
– In-memory image?
– Locks?
– ... Anything else?

BASIC ANSWER: REPLICATE WAL

10

– Claim: If all replicas execute all WAL ops, in the same order, then
all other state (DB image, locks, ...) will be reconstructed in the
same way across replicas (assuming deterministic operation).  

– It can be useful to be able to push checkpoints of the DB to a
recovering/new replica, but we’ll ignore that for now and focus on
replicating the WAL.

QUESTION 2: WHAT SEMANTIC TO REQUIRE?

11

– Requirement: all replicas apply (1) the same log entries,  
(2) in the same order.

– Otherwise, inconsistencies can occur.
– As examples, consider:

– One replica skips log entry for an update while others apply it.
– One replica receives two updates for a particular row in one order while another

receives them reversed.  

QUESTION 3: HOW TO REPLICATE?

12

– Requirement: all replicas apply (1) the same log entries, (2) in the
same order.

– One idea: 2PC.
– 2PC ensures that all participants either do all ops or  

don’t do any of the operations.
– Could we use this protocol for WAL replication?

Mock protocol based on 2PC

13

MOCK 2PC-BASED REPLICATION

14

– A, B, C are replicas of a single shard. They need to coordinate to
apply all WAL entries in the same order.

– Q: how might it work and what problems would arise.

MOCK DESIGN

15

– One replica assigned as TC. TC decides on order of ops in the log
and performs 2PC for each log entry, every time blocking for the
protocol to finish before launching a 2PC for the next log entry.

– This ensures that all replicas:
– Apply all log entries (thanks to 2PC).
– Apply log entries in the same order (thanks to sequential way in which TC

performs log entry pushes to participants).

PROBLEMS WITH MOCK

16

– NOT fault tolerant (but durable):
– Because TC must wait for all replicas to reply that they are going to perform the

update, the coordinator needs to block every time one replica is slow,
disconnected, or dead.

– But the mock does provide more durability than 2PC across shards.

– When the coordinator dies, someone else must become coordinator.
Yet, we must have only one (at most) coordinator, otherwise different
coordinators may impose different orders on log entries. This is
called leader election and is not addressed in 2PC, which assumes
a static coordinator!

Consensus protocols

17

18

CONSENSUS PROTOCOLS

19

– Require only a majority of nodes to be up at any time in order to
make progress.

– Similar to 2PC, but instead of waiting for all participants to respond,
they wait for a majority of the replicas to respond.
– In a fail-stop failure model (i.e., nodes are not malicious), 

the majority needed is a simple majority; i.e., one can tolerate f simultaneous
failures with 2f+1 replicas.

– In a malicious failure model, one needs a super-majority, i.e., one can tolerate f
simultaneous failures with 3f+1 replicas.

SIMPLE MAJORITIES

20

– There cannot exist two majorities in a given group at the same time.
– This means that if a node obtains OKs from a majority of nodes – say in a first phase like

2PC’s – then another node (e.g., another simultaneous coordinator) is guaranteed to not have
obtained OKs from a majority of the nodes.

– This lets us replace a dead Coordinator with a new one without introducing inconsistencies.
That’s how we address the leader election problem.

– Any two majorities of a group will overlap in at least one node.
– This means that if an old Coordinator obtained OKs from a majority of the nodes, then sent

COMMIT messages that were received by a majority of the nodes, and subsequently crashed
before it could inform the other nodes of the COMMIT outcome, then a new Coordinator that
is “elected” subsequently, will learn about the outcome by talking to any (other) majority, and
so it can continue the commit process that the first (now dead) Coordinator began.

PAXOS AND RAFT

21

– Paxos [Lamport-1998]: Original protocol. Solves the basic
consensus problem as defined in the Agreement lecture
(consensus on the value of a write-once register, with the
consistency, validity, and termination requirements).  

– RAFT [Ongaro-Ousterhout-2014]: More recent, operates at a
higher level of abstraction, and shows very clearly how to
replicate the WAL (for example) to implement fault-tolerant
transactions.

LESLIE LAMPORT

22

– Winner of the 2013 Turing Award
– Known for imposing clear, well-defined

coherence on the seemingly chaotic behavior
of distributed computing systems

– Also known for
– LaTeX (typesetting system)
– Byzantine Fault Tolerance
– TLA+ (formal verification tools)
– ...

A BRIEF HISTORY OF PAXOS

23

1989
1990

1998

~2005

2010s
2014

Viewstamped Replication – Liskov & Oki
Paxos – Leslie Lamport, “The Part-Time Parliament”

Paxos paper published

First practical deployments

Widespread use!
Lamport wins Turing Award

first submitted in 1990, published in 1998, won ACM SIGOPS Hall of Fame Award in 2012
THE PART-TIME PARLIAMENT

24

– The initial draft was obscure with an "archaeological" tone

– Three years after publishing original Paxos paper, Lamport
published a simplified version to explain the protocol
– "The current version is 13 pages long, and contains no formula more

complicated than n1 > n2."
– Maybe a bit over-simplified..

PAXOS MADE SIMPLE

25

RAFT

26

John Ousterhout
Professor of Computer Science

Stanford University

Diego Ongaro
Ph.D., Computer Science

Stanford University

Diego Ongaro and John Ousterhout, 2014
RAFT

27

– Unfortunately, Paxos is quite difficult to understand, in spite of
numerous attempts to make it more approachable...

– ..we set out to find a new consensus algorithm that could provide a
better foundation for system building and education. Our approach
was unusual in that our primary goal was understandability: could
we define a consensus algorithm for practical systems and
describe it in a way that is significantly easier to learn than Paxos?"

https://thesecretlivesofdata.com/raft/
A PREVIEW OF RAFT W/ VISUALIZATION

28

TAKEAWAYS

29

– Reaching consensus in DS is crucial but challenging.
– Key: from a single static coordinator to majorities.
– Approach:Replicating WAL and ensure all logs in the same order.
– Next class: Consensus (contd.).

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS SLIDES INCLUDES CONTENTS FROM PROF. DAN PORTS' DISTRIBUTED
SYSTEMS COURSE (UW)

