CLOUD COMPUTING

Consensus

oooooooooooooooooooooooooooo

CONTEXT

— We learned how to achieve atomicity, isolation in a sharded
database.

— Today we learn how to achieve fault tolerance through replication.
Problem of maintaining multiple replicated shards can ultimately be
reduced to consensus.

— We discuss Paxos and Raft, the best known consensus protocols.

GAME: CONSENSUS!

— Each student votes on an integer between 1 - 100.

— Can only vote once, repeated votes become invalid.

— Win: if the majority of voters have chosen the same number, everyone in
the quorum gets extra credits in the final.

— Lose: no quorum reacheda.

— Extra: before checking results, Chang can void a number. E
— Shouting out a number may not sound like a good idea now?

— You have 5 min to discuss a strategy. .
— Submit your vote to https://shorturl.at/41g1l E |'-I"-

3

[=]

OUTLINE

— Problem: Replicating ACID shards
— Mock protocol with 2PC

— Consensus protocols

— Ratft Visuals

Problem: Replicating ACID
shards

Web FE Web FE Web FE
N 7
Cache || Cache || Cache
N\ /

_
N

/.

DB
shard
1

DB
shard
2

DB
shard
n

EXAMPLE: WEB SERVICE WITH TRANSACTIONS

— Assume: sharded database. Each DB
shard runs an ACID engine (so runs
2PL+WAL). The shards coordinate via
2PC.

— Question: Without shard replication, what
fault tolerance problems can arise?

EXAMPLE: WEB SERVICE WITH TRANSACTIONS

— Fault tolerance problems w/o replication:

WebFE || WebFE || Web FE — Data, WAL for each shard are stored on one disk. If

N 7 : . : . .y |
Cache |[Cache | Cache disk dies, shard’s data is lost. Durability problem!
N d
<Network> — Even if disks don't fail, recall that 2PC can block if a
shard server fails at inopportune time. Transactions
/ \ interacting with the failed server block, along with
many new transactions that transitively depend on
DB DB DB

shard | | shard shard roWs Ioc_k_ed by the blocked transactions.
1 2 " Availability problems!

SOLUTION: REPLICATION

Web FE Web FE Web FE
N 7
Cache || Cache || Cache
N\ /

 Network

e

DB
shard
- 1

DB
shard
2

N

DB
shard
- n

— Architecture:

— Replicate each shard across multiple servers
(each ACID, so they maintain WAL and do 2PL).

— Replicas of a shard coordinate to maintain their
state “in sync,” ideally giving the illusion that they
are a single, (almost) always-on server.

— 2PC is executed across replica groups (we'll
discuss how In future lectures). Because replica
groups “never’ die or become partitioned, 2PC
“‘never” blocks.

QUESTION 1: WHAT STATE TO REPLICATE?

— Disk image?

replica group for shard 1 — In-memory image?

m)% . — Locks?

| — | ?
) . c || ... Anything else*
(ACID) (ACID) (ACID)

o oan o o o e E o En En S e ED EE G EE G SR R B EE BN ED EE ED GD EE D GE G S S e B e B e S e en mn ee em)

BASIC ANSWER: REPLICATE WAL

— Claim: If all replicas execute all WAL ops, in the same order, then
all other state (DB image, locks, ...) will be reconstructed in the
same way across replicas (assuming deterministic operation).

— It can be useful to be able to push checkpoints of the DB to a
recovering/new replica, but we’ll ignore that for now and focus on
replicating the WAL.

10

QUESTION 2: WHAT SEMANTIC TO REQUIRE?

— Requirement: all replicas apply (1) the same log entries,
(2) In the same order.

— Otherwise, inconsistencies can occur.

— As examples, consider:
— One replica skips log entry for an update while others apply it.

— One replica receives two updates for a particular row in one order while another
receives them reversed.

11

QUESTION 3: HOW TO REPLICATE?

— Requirement: all replicas apply (1) the same log entries, (2) in the
same order.

— One idea: 2PC.

— 2PC ensures that all participants either do all ops or
don’t do any of the operations.

— Could we use this protocol for WAL replication?

12

Mock protocol based on 2PC

MOCK 2PC-BASED REPLICATION

— A, B, C are replicas of a single shard. They need to coordinate to
apply all WAL entries in the same order.

— Q: how might it work and what problems would arise.

Prepare Phase Commit Phase

14

MOCK DESIGN

— One replica assigned as TC. TC decides on order of ops in the log
and performs 2PC for each log entry, every time blocking for the
protocol to finish before launching a 2PC for the next log entry.

— This ensures that all replicas:
— Apply all log entries (thanks to 2PC).

— Apply log entries in the same order (thanks to sequential way in which TC
performs log entry pushes to participants).

15

PROBLEMS WITH MOCK

—NOT fault tolerant (but durable):

— Because TC must wait for all replicas to reply that they are going to perform the
update, the coordinator needs to block every time one replica is slow,
disconnected, or dead.

— But the mock does provide more durability than 2PC across shards.

— When the coordinator dies, someone else must become coordinator.
Yet, we must have only one (at most) coordinator, otherwise different
coordinators may impose different orders on log entries. This is
called leader election and is not addressed in 2PC, which assumes

a static coordinator!

16

Consensus protocols

| | E DWE
Girls Hoo Hack 2023: Hacksand Crafts
tober 25-26, Rice Hall

(Girls Hoo Hack 1san1n person 48-hour hackathon hosted by Girls Who
Codeat UVA that amms to foster a community of diverse thought and skall.

toallwmm+allies
levelsweloome!

"« Funworkshops indudin
Decopngtot

o More!
: Netwoﬂ angopportunities

| O

O

OE

18

CONSENSUS PROTOCOLS

— Require only a majority of nodes to be up at any time in order to
make progress.

— Similar to 2PC, but instead of waiting for all participants to respond,
they wait for a majority of the replicas to respond.

— In a fail-stop failure model (i.e., nodes are not malicious),
the majority needed is a simple majority; i.e., one can tolerate f simultaneous
failures with 2f+1 replicas.

— In a malicious failure model, one needs a super-majority, i.e., one can tolerate f
simultaneous failures with 3f+1 replicas.

19

SIMPLE MAJORITIES

— There cannot exist two majorities in a given group at the same time.

— This means that if a node obtains OKs from a majority of nodes — say in a first phase like
2PC’s — then another node (e.g., another simultaneous coordinator) is guaranteed to not have
obtained OKs from a majority of the nodes.

— This lets us replace a dead Coordinator with a new one without introducing inconsistencies.
That’s how we address the leader election problem.

— Any two majorities of a group will overlap in at least one node.

— This means that if an old Coordinator obtained OKs from a majority of the nodes, then sent
COMMIT messages that were received by a majority of the nodes, and subsequently crashed
before it could inform the other nodes of the COMMIT outcome, then a new Coordinator that
IS “elected” subsequently, will learn about the outcome by talking to any (other) majority, and
so it can continue the commit process that the first (now dead) Coordinator began.

20

PAXOS AND RAFT

— Paxos [Lamport-1998]: Original protocol. Solves the basic P 05
orel ax
consensus problem as defined in the Agreement lecture
(consensus on the value of a write-once reqister, with the
consistency, validity, and termination requirements).

— RAFT [Ongaro-Ousterhout-2014]. More recent, operates at a
higher level of abstraction, and shows very clearly how to
replicate the WAL (for example) to implement fault-tolerant
transactions.

21

LESLIE LAMPORT

— Winner of the 2013 Turing Award

— Known for imposing clear, well-defined
coherence on the seemingly chaotic behavior
of distributed computing systems

— Also known for
— LaTeX (typesetting system)

— Byzantine Fault Tolerance
— TLA+ (formal verification tools)

22

A BRIEF HISTORY OF PAXOS

/\
1989 Viewstamped Replication — Liskov & OKki
1990 Paxos — Leslie Lamport, “The Part-Time Parliament”
1998 Paxos paper published
~2005 First practical deployments
2010s Widespread use!
2014 Lamport wins Turing Award

23

THE PARIT-TIME PARLIAMENT

first submitted in 1990, published in 1998, won ACM SIGOPS Hall of Fame Award in 2012

— The initial draft was obscure with an "archaeological" tone

13 SAmTeN
5 o CERICO o
e U 113 B TS ITHAQUE
& 6 gigniuome
N ’W"—d 7 E
v — :
. . -t—.-:'k !

ICarFou
PAXCS

) SN

- 0 e
VHORIN
' 4 ¥ v, -

.
i
- e '

- ’,
-

24

PAXOS MADE SIMPLE

— Three years after publishing original Paxos paper, Lamport
published a simplified version to explain the protocol

— "The current version is 13 pages long, and contains no formula more
complicated than n1 > n2."

Contents

— Maybe a bit over-simplified..

1 Introduction

2 The Consensus Algorithm
2.1 TheProblem,
2.2 Choosinga Value

Abstract 2.3 Learninga Chosen Value.
2.4 Progress e e e e e e e e
The Paxos algorithm, when presented in plain English, is very simple. 2.5 The Implementation

3 Implementing a State Machine

References

25

John QOusterhout Diego Ongaro
Professor of Computer Science Ph.D., Computer Science
Stanford University Stanford University

26

RAFT

Diego Ongaro and John Ousterhout, 2014

— Unfortunately, Paxos is quite difficult to understand, in spite of
numerous attempts to make it more approachable...

—..We set out to find a new consensus algorithm that could provide a
better foundation for system building and education. Qur approach
was unusual in that our primary goal was understandability: could
we define a consensus algorithm for practical systems and
describe it in a way that is significantly easier to learn than Paxos?"

27

A PREVIEW OF RAFT W/ VISUALIZATION

https://thesecretlivesofdata.com/raft/

[NIVERSITY
JVIRGINIA

TAKEAWAYS

— Reaching consensus in DS is crucial but challenging.

— Key: from a single static coordinator to majorities.

— Approach:Replicating WAL and ensure all logs in the same order.
— Next class: Consensus (contd.).

29

[UNIVERSITY
I\VIRGINIA

ACKNOWLEDGEMENT

THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS
SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

THIS SLIDES INCLUDES CONTENTS FROM PROF. DAN PORTS' DISTRIBUTED
SYSTEMS COURSE (UW)

