
CS4740
CLOUD COMPUTING

Two-Phase Commit

Prof. Chang Lou, UVA CS, Fall 2025

1

2

3

LAB 2A IS RELEASED

– Lab2A: Raft - Leader Election
–Deadline: 10/20 23:59:59 EST
–A lot of interesting questions to answer in your lab 2A implementation

–How can a group of votes decide the unique leader? What if the old leader dies? What if
some network failures happen? How to send RPCs to multiple nodes in parallel?...

– My advice (again): Start the lab 2A immediately
–Don't wait for lectures: they only cover high-level designs
–You'll learn much more from paper and hands-on experience
–Refer to the overview session recordings on Canvas!
–In summary: start lab 2 today!

4

AGREEMENT

5

– We discussed two types of agreements
–Atomic commitment: e.g., when to meet
–Consensus: e.g., which zoom link to use

– Why we need such agreements in DS?
–Atomic commitment <= Scalability: sharding
–Consensus <= Fault tolerance: replication

– Today we discuss a solution 2PC for atomic commitment
–We have discussed transactions in single-node settings
–Let's discuss how distributed transactions are implemented

OUTLINE

6

– Context
– Two-phase commit (2PC)
– 2PC failure scenarios
– 2PC limitations

EXAMPLE: WEB SERVICE ARCHITECTURE

– Web front end (FE), database server (DB),
network. FE is stateless, all state in DB.

– Suppose the FE implements a banking
application (supporting account transfers,
listings, and other functionality).

– Suppose the DB supports ACID
transactions and the FE uses transactions.

Web FE

DB

Network

Cache

7

Question: How do we make this:
• scalable?
• fault tolerant?

SCALABILITY: SHARDING

– FE and DB are both sharded:
–FEs accept requests from  

end-users’ browsers and  
process them concurrently.

–DB is sharded, say by user IDs.

– Suppose each DB backend is on
its own transactional (ACID).
Then, FE issues transactions
against one or more DB shards.

Web FE

DB
shard

2

Network

Web FE Web FE

CacheCache Cache

DB
shard

1

DB
shard

n

8

FAULT TOLERANCE: REPLICATION

– FE is stateless, so the fact that it is shared
means it’s also replicated/fault tolerant.

– But DB is stateful, so active replication is
needed for each shard. Each shard is
managed by a replica group, which
cooperate to keep themselves up to date
with respect to the updates.

– FE sends requests for DB different shards
go to different replica groups.

Web FE

Network

Web FE Web FE

CacheCache Cache

9

DB
shard

2

DB
shard

1

DB
shard

n

CHALLENGES

– Question: What are the challenges of
implementing ACID across the entire
sharded & replicated, DB service?

Web FE

Network

Web FE Web FE

CacheCache Cache

10

DB
shard

2

DB
shard

1

DB
shard

n

CHALLENGES DUE TO SHARDING

– Ignore replication. Implementing ACID
across all DB shard servers:

11

Web FE

DB
shard

2

Network

Web FE Web FE

CacheCache Cache

DB
shard

1

DB
shard

n

– Case 1: No transactions ever span
multiple shards. Easy: individual DB
shard performs transaction.

– Case 2: Transactions can span multiple
shards. Challenge: shards participating
on any transaction need to agree on (1)
whether or not to commit a transaction
and (2) when to release the locks.

CHALLENGES DUE TO SHARDING

– Example:
–Say FE service is a banking  

service that supports the TRANSFER and
REPORT_SUM functions from the previous lecture.

– If the two accounts are stored on different shards,
then the two operations (deduct from one and add
to the other) will need to be executed either both or
neither.

–Unfortunately, the two machines can fail, or decide
to unilaterally abort, INDEPENDENTLY.

12

Web FE

DB
shard

2

Network

Web FE Web FE

CacheCache Cache

DB
shard

1

DB
shard

n

CHALLENGES DUE TO SHARDING

– Example:
–So, you need an agreement  

protocol, and in this case the most suitable is an
atomic commitment protocol (why?).  

–Well-known atomic commitment protocol: two-
phase commit.

13

Web FE

DB
shard

2

Network

Web FE Web FE

CacheCache Cache

DB
shard

1

DB
shard

n

CHALLENGES DUE TO REPLICATION

– Ignore sharding. Implementing ACID
across all replicas of a given shard:
–Challenge: All replicas of the shard must execute

all operations in the same order.  

–If the operations are deterministic, then agreeing
on the order of keeps the copies of the database
on the different replicas will evolve identically, i.e.,
they will all be kept consistent.

14

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

CHALLENGES DUE TO REPLICATION

– Example
–Suppose there are two transactions,  

each with a single operation, against the same cell in the
database:
–TX1: x += 1
–TX2: x *= 2

– Internally, all three replicas are ACID  
databases, so they will serialize these transactions, e.g., either
(TX1, TX2) OR (TX2, TX1).

– If Replica A processes (TX1, TX2) and Replica B processes
(TX2, TX1), then after executing these transactions, the DB
copies on the two replicas will diverge to x=8 and x=7,
respectively.

15

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

CHALLENGES DUE TO REPLICATION

– Example
–The problem of agreement on the order in which

to execute operations can be cast as an instance
of the consensus problem (why?).

–Well known consensus protocol: Paxos, Raft
–We study these protocols next time.

16

Web FE

Network

Web FE Web FE

CacheCache Cache

DB
shard

2

DB
shard

1

DB
shard

n

Two-Phase Commit (2PC)

17

MOTIVATION: SENDING MONEY

18

send_money(A, B, amount) {
 Begin_Transaction();
 if (A.balance - amount >= 0) {
 A.balance = A.balance - amount;
 B.balance = B.balance + amount;
 Commit_Transaction();
 } else {
 Abort_Transaction();
 }
}

SINGLE-SERVER: ACID

19

– Atomicity: all parts of the transaction execute or none (A’s
decreases and B’s balance increases)

– Consistency: the transaction only commits if it preserves invariants
(A’s balance never goes below 0)

– Isolation: the transaction executes as if it executed by itself (even if
C is accessing A’s account, that will not interfere with this transaction)

– Durability: the transaction’s effects are not lost after it executes
(updates to the balances will remain forever)

DISTRIBUTED TRANSACTIONS?

20

– Partition databases across multiple machines for scalability (A and
B might not share a server)

– A transaction might touch more than one partition

– How do we guarantee that all of the partitions commit the
transactions or none commit the transactions?

TWO-PHASE COMMIT (2PC)

21

– Goal: General purpose, distributed agreement on some action, with
failures
–Different entities play different roles in the action

– Running example: Transfer money from A to B
–Debit at A, credit at B, tell the client “okay”
–Require both banks to do it, or neither
–Require that one bank never act alone

– This is an all-or-nothing atomic commit protocol

STRAW MAN PROTOCOL

22

– 1. C -> TC: “go!”Client C

Transaction
Coordinator TC

Bank A B

go!

STRAW MAN PROTOCOL

23

– 1. C -> TC: “go!”
– 2. TC -> A: “debit $20!”
– TC -> B: “credit $20!”
– TC -> C: “okay

– A, B perform actions on receipt
of messages

Client C

Transaction
Coordinator TC

Bank A B

go! okay

debit $20 credit $20

REASONING ABOUT THE STRAW MAN PROTOCOL

24

– What could possibly go wrong?

– 1. Not enough money in A’s bank account?
– 2. B’s bank account no longer exists?
– 3. A or B crashes before receiving message?
– 4. The best-effort network to B fails?
– 5. TC crashes after it sends debit to A but before sending to B?

SAFETY VERSUS LIVENESS

25

– Note that TC, A, and B each have a notion of committing
– We want two properties:
– 1. Safety

–If one commits, no one aborts
– If one aborts, no one commits

– 2. Liveness
–If no failures and A and B can commit, action commits
– If failures, reach a conclusion ASAP

A CORRECT ATOMIC COMMIT PROTOCOL

26

– 1. C -> TC: “go!”Client C

Transaction
Coordinator TC

Bank A B

go!

A CORRECT ATOMIC COMMIT PROTOCOL

27

– 1. C -> TC: “go!”
– 2. TC -> A, B: “prepare!”

Client C

Transaction
Coordinator TC

Bank A B

prepare prepare

A CORRECT ATOMIC COMMIT PROTOCOL

28

– 1. C -> TC: “go!”
– 2. TC -> A, B: “prepare!”
– 3. A, B -> P: “yes” or “no”

Client C

Transaction
Coordinator TC

Bank A B

yes yes

A CORRECT ATOMIC COMMIT PROTOCOL

29

– 1. C -> TC: “go!”
– 2. TC -> A, B: “prepare!”
– 3. A, B -> P: “yes” or “no”
– 4. TC -> A, B: “commit!” or

“abort!”
–TC sends commit if both say yes
–TC sends abort if either say no

Client C

Transaction
Coordinator TC

Bank A B

commit commit

A CORRECT ATOMIC COMMIT PROTOCOL

30

– 1. C -> TC: “go!”
– 2. TC -> A, B: “prepare!”
– 3. A, B -> P: “yes” or “no”
– 4. TC -> A, B: “commit!” or “abort!”

–TC sends commit if both say yes
–TC sends abort if either say no

– 5. TC -> C: “okay” or “failed”

– A, B commit on receipt of commit
message

Client C

Transaction
Coordinator TC

Bank A B

okay

REASONING ABOUT ATOMIC COMMIT

31

– Why is this correct?
–Neither can commit unless both agreed to commit

– What about performance?
–1. Timeout: I’m up, but didn’t receive a message I expected

–Maybe other node crashed, maybe network broken
–Server Termination Protocol

–2. Reboot: Node crashed, is rebooting, must clean up
–Recovery Protocol

TIMEOUTS IN ATOMIC COMMIT

32

– Where do hosts wait for messages?
– 1. TC waits for “yes” or “no” from A and B

–TC hasn’t yet sent any commit messages, so can safely abort after a timeout
–But this is conservative: might be network problem

–We’ve preserved correctness, sacrificed performance
– 2. A and B wait for “commit” or “abort” from TC

–If it sent a no, it can safely abort (why?)
– If it sent a yes, can it unilaterally abort?
–Can it unilaterally commit?
–A, B could wait forever, but there is an alternative…

SERVER TERMINATION PROTOCOL

33

– Consider Server B (Server A case is symmetric) waiting for commit or abort from TC
–Assume B voted yes (else, unilateral abort possible)

– B -> A: “status?” A then replies back to B. Four cases:
–(No reply from A):
–Server A received commit or abort from TC:
–Server A hasn’t voted yet or voted no:

–Server A voted yes:

SERVER TERMINATION PROTOCOL

34

– Consider Server B (Server A case is symmetric) waiting for commit or abort from TC
–Assume B voted yes (else, unilateral abort possible)

– B -> A: “status?” A then replies back to B. Four cases:
–(No reply from A): no decision, B waits for TC
–Server A received commit or abort from TC: Agree with the TC’s decision
–Server A hasn’t voted yet or voted no: both abort

–TC can’t have decided to commit
–Server A voted yes: both must wait for the TC

–TC decided to commit if both replies received
–TC decided to abort if it timed out

REASONING ABOUT THE SERVER TERMINATION PROTOCOL

35

– What are the liveness and safety properties?
–Safety: if servers don’t crash, all processes will reach the same decision
–Liveness: if failures are eventually repaired, then every participant will eventually reach

a decision

– Can resolve some timeout situations with guaranteed correctness
– Sometimes however A and B must block

–Due to failure of the TC or network to the TC

– But what will happen if TC, A, or B crash and reboot?

HOW TO HANDLE CRASH AND REBOOT?

36

– Can’t back out of commit if already decided
–TC crashes just after sending “commit!”
–A or B crash just after sending “yes”

– If all nodes knew their state before crash, we could use the termination
protocol…
–Use write-ahead log to record “commit!” and “yes” to disk

RECOVERY PROTOCOL WITH NON-VOLATILE STATE

37

– If everyone rebooted and is reachable, TC can just check for commit
record on disk and resend action

– TC: If no commit record on disk, abort
–You didn’t send any “commit!” messages

– A, B: If no yes record on disk, abort
–You didn’t vote “yes” so TC couldn’t have committed

– A, B: If yes record on disk, execute termination protocol
–This might block

TWO-PHASE COMMIT

38

– This recovery protocol with non-volatile logging is called Two-Phase
Commit (2PC)

– Safety: All hosts that decide reach the same decision
–No commit unless everyone says “yes”

– Liveness: If no failures and all say “yes” then commit
–But if failures then 2PC might block
–TC must be up to decide

– Doesn’t tolerate faults well: must wait for repair

2PC Failure Scenarios

39

RULE

40

– Take a try, get one donut

– Get it right, win an extra donut for your pal!

WHAT IF PARTICIPANT FAILS BEFORE SENDING RESPONSE?

41

WHAT IF PARTICIPANT FAILS BEFORE SENDING RESPONSE?

42

WHAT IF PARTICIPANT FAILS AFTER SENDING VOTE

43

WHAT IF PARTICIPANT FAILS AFTER SENDING VOTE

44

WHAT IF PARTICIPANT LOST A VOTE?

45

WHAT IF PARTICIPANT LOST A VOTE?

46

WHAT IF COORDINATOR FAILS BEFORE SENDING PREPARE?

47

WHAT IF COORDINATOR FAILS BEFORE SENDING PREPARE?

48

WHAT IF COORDINATOR FAILS AFTER SENDING PREPARE?

49

WHAT IF COORDINATOR FAILS AFTER SENDING PREPARE?

50

WHAT IF COORDINATOR FAILS AFTER RECEIVING VOTES

51

WHAT IF COORDINATOR FAILS AFTER RECEIVING VOTES

52

WHAT IF COORDINATOR FAILS AFTER SENDING DECISION?

53

WHAT IF COORDINATOR FAILS AFTER SENDING DECISION?

54

WHAT IF COORDINATOR FAILS AFTER SENDING ONLY ONE DECISION?

55

WHAT IF COORDINATOR FAILS AFTER SENDING ONLY ONE DECISION?

56

WHAT IF COORDINATOR FAILS BEFORE SENDING ANY DECISION?

57

WHAT IF COORDINATOR FAILS BEFORE SENDING ANY DECISION?

58

2PC Limitations

59

2PC IS BLOCKING

60

– A process can block indefinitely in its uncertainty period until a TC or
network failure is resolved.

– If TC is also a participant, then a single-site failure can cause 2PC to block
indefinitely!

– And it blocks while each shard server is holding locks, preventing other
transactions that don’t even interact with the failed shard server from
making progress!

– This is why 2PC is called a blocking protocol and cannot be used as a
basis for fault tolerance.

2PC IS EXPENSIVE

61

– Time complexity: 3 message latencies on the critical path: PREPARE
→ PREPARE-OK/FAIL → ABORT/COMMIT.

– Message complexity: common case for n participants + 1 TC: 3n
messages.

– That’s expensive, esp. if shards are geo distributed.
– Optimizations, or adding an extra phase (3PC), cannot address the

blocking/performance problems of 2PC while maintaining its
semantic.

TAKEAWAYS

62

– How to construct our fuller Web service architecture from Lecture 1 (took
us long, ha)?
–today: how to achieve scalability through sharding, with 2PC.
– future: how to achieve fault tolerance through replication.

– Next class: Guest Talk

ACKNOWLEDGEMENT
THIS COURSE IS DEVELOPED HEAVILY BASED ON COURSE MATERIALS

SHARED BY PROF. INDRANIL GUPTA, PROF. ROBERT MORRIS, PROF.
MICHAEL FREEDMAN, PROF. KYLE JAMIESON, PROF. WYATT LLOYD

AND PROF. ROXANA GEAMBASU. MANY APPRECIATIONS FOR
GENEROUSLY SHARING THEIR MATERIALS AND TEACHING INSIGHTS.

